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1 Introduction 
  
 Nowadays, digital documents are very easily counterfeited especially in software 

source code. People tend to represent someone else’s work or online documents as if they 

were their own. For example, in schools and universities, students seem to occasionally 

plagiarize their assignments from their friends or the Web. It is becoming a serious issue 

to prove whether someone’s document is his own work or not. 

   Few decades ago, document fingerprinting techniques were proposed to detect 

and reveal the similarity between documents. These techniques such as MOSS [6], and 

SCAM[9] work well in finding the complete or partial duplication of documents by 

comparing a desired document with registered documents. However, most document 

fingerprinting techniques only focus on detecting the similar text pattern between 

documents, but are not interested in detecting the relationships among text elements. In 

practice, to show that documents are similar, document fingerprinting has to compare 

both text pattern and text relationship. Text patterns are words, phrases or an alphabet in 

the document. Text relationship is the association between two text patterns in the 

document. These can be represented by graphs, where nodes act as text patterns and 

edges act as text relationships [5]. For example, the phrase “Joe loves Mary” can be 

represented in a graph as [Joe] � (subj) �[love] � (obj) �[Mary], where phrases in 

“[]” represent text patterns, and phases in “()” represent text relationships). 

  Document fingerprinting using both text pattern and text relationship methods 

can evaluate the similarity between two documents more effectively. For example, phrase 

1: “Jim is a dog” and phrase 2: “Jimi’s dog” are compared to each other. If document 

fingerprinting focuses only text pattern, such as MOSS, phrase 1 will be converted to a 
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set of {“Jimisdog”} because only significant words are chosen.  More detail is described 

in section 2.1), and phrase 2 will be converted to a set of {“Jimisdog”}. Thus, the 

comparison of both sets, both phrases are totally the same. However, the meaning of both 

phrases is absolutely different. On the other hand, if document fingerprinting involves 

both text pattern and text relationship detection, phrase 1 can be represented with a graph 

like [Jim] �(subj)�[is]�(obj)�[dog], and phrase 2 can be represented with a graph 

like [Jimi’s dog]�(null). Clearly, both graphs are different.   

 In this paper, we will transfer documents into graph format that will be 

represented as nodes and edges. Next, we will find their graph grammar using Subdue [2] 

(section 2.4). Finally, we will measure the similarity between their graph grammars by 

using the concept of graph isomorphism [7], and graph transformation.       

The next section will explain document fingerprinting, and, in particular, MOSS 

[section 2.1]. Subdue is described in section 2.2. Our method and document 

fingerprinting algorithm using graph grammar induction is discussed in section 3. Finally, 

section 4 gives a conclusion and future work. 
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2 Related Work 
  
 To understand how document fingerprinting works, section 2.1 explains it in 

terms of MOSS [6], one leading document fingerprinting algorithm. In section 2.2 we 

will introduce Subdue, a program using for graph grammar extraction.  

2.1 Document Fingerprinting and MOSS 
 
Document fingerprinting is a technique for detecting document-based textual 

simirality. As the document is becoming more avariable electronically, it is easily copied. 

Therefore, this method is widely used to detection of copyright violations and plagiarism 

not only for registered documents--documents contained in a database--but also for 

documents available over internet. More information about document fingerprinting is 

available in [3], [6] and [9]. The general architecture for document fingerprinting is 

shown in Figure 2.1 

   
Figure 2.1 General architectural for document fingerprinting  

 

One well known doucument fingerprinting algorithm is MOSS, which stands for 

Measure Of Software Similarity. It was developed at Berkeley in 1994. MOSS works 

primarily on software source code, as the name suggest. It can work with different 

programming languages, including C, C++, Java, Pascal, etc.  

Noise Module 
Document 

A Hash Function 

Document 
B 

Noise Module Hash Function 

Matching 
Result 

Set of hash value sequence 
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MOSS works as follows. First, it extracts significant words or phrases from the 

desired documents. This means that all uninteresting or noise data are ignored by 

applying whitespace insensititivity, and noise suppression [3]. Whitespace insensitivity 

leaves strings unaffected. Normally whitespace insensitivity ignores whitespace 

characters, capitalization and punctuation. Noise suppression is short or common words 

that we are not interested in, such as “the”, “a”, etc. However, whitespace insensititivity 

and noise suppression can be defined differently depending on various domains or 

programming languages. 

After the documents are clean of noise, MOSS  combines all text in the document 

together and divides them to small sub-strings by the length of k-gram as in Figure 

2.2(b), 2.2(c). The length of k-gram is the number of alphabets in each sub-string and is 

individually defined by each user. Then the sequence of sub-string of length k-gram is 

created. The index number for representing each sub-string is added by using hashing 

function shown in Figure 2.2(d). Finally, these sequences of index numbers of the two 

documents are compared to find similarity between the two documents. However, in 

large documents, we will get a long sequence index. To solve this problem, MOSS 

chooses only a conditional sequence list of indices, which is defined by user. For 

example, in Figure 2.2(e), we consider only the sequence of hash values which can be 

divided by 4 (0 mod 4). 
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      Figure 2.2 Fingerprinting some sample text 
 

2.2 Subdue 
 

Subdue [2] is an algorithm for discovering knowledge in structural data. It can 

discover interesting and repetitive subgraphs in a labeled graph representation using the 

minimum description length (MDL) principle, which seeks to minimize the description 

length of the entire data set. The substructure discovery algorithm used by Subdue is a 

beam search. Subdue’s main discovery algorithm is shown in figure 2.3. Subdue first 

extends finds all possible single-vertex substructures in another input graph. Each 

substructure is then evaluated using the Minimum Description Length heuristic, and 

inserted in the ChildList, in order by the heuristic value [6]. Then the main search is 

called, which extends each substructure in all possible ways. is called, and return the best 

substructure in ChildList which contains the minimum MDL value and also its length is 

less than beam width. By this step, a substructure is extracted and original graph is 

compressed by replacing all instances of discovery substructures as a single vertex, which 

represents the substructure’s instance. Subdue will repeat this process and will until it 

Fingerprinting , fingerprinting. 
(a) sample text form 
 
fingerpirntingfingerprinting 
(b) text with removing noise 
 
fing erpi rnti ngfi nger prin ting 
(c) the sequence of 4-grams derived from the text 
 
72 75 68 50 18 90 24 
(d) A hypothetical sequence of hashes of the 4-grams 
 
72 68 24   
(e) The sequence of hashes selected using 0 mod 4 
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terminates when no more substructures are discovered found. The search returns the best 

substructure, which has the minimum MDL value. After this step, the best substructure is 

extracted and replaced by a single vertex in the original input graph, which represents the 

substructure’s instance. This way the graph is compressed. More details about Subdue 

can be found in [1], [2], [4], [5], and [6]. 

 

 

 

 

 

 

 

 

 

 

 

 
                                 Figure2.3 Subdue’s discovery algorithm [6] 

 
 In our work, we use SubdueGL [1, 4, 5], an algorithm based on Subdue to 

generate recursive graph grammars. SubdueGL has more operators that allow SubdueGL 

more potential performance into extracting graph grammars. One of its most interesting 

operators is the Recursify Substructure search operator which can detect and create 

recursive productions. This operator adds the connecting edge to the substructure and 

collects all possible chains of instances during the discovery operator. 

Subdue (Graph, Beam Width, MaxBest, MaxSubSize, Limit) 
ParentList = {} 
ChildList = {} 
BestList = {} 
ProcessedSubs = 0 
 
Create a substructure from each unique vertex label and its single-

vertex instances; Insert the resulting substructure in ParentList 
  

while ProcessedSubs <= Limit and ParentList is not empty do 
      while ParentList is not empty do 
           Parent = RemoveHead( ParentList) 
           Extend each instance of Parent in all possible ways 
           Group the extended instance into Child substructures 
           for   each Child do 
                 if SizeOf (child) <= MazSubSize then 
                     Evaluate the Child 
                     Insert Child in ChildList in order by value 
                     if Length (ChildList) > BeamWidth then 
                            Destroy the substructure at the end of ChildList 
            ProcessedSubs = ProcessedSubs +1 
            Insert Parent in BestList in order by value     
            if  Length( BestList ) > MaxBest then 
                   Destroy the substructure at the end of BestList 
            Switch ParentList and ChildList 
return BestList         
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RecursifySubstructure starts by checking each instance of the substructure to see if it is 

connected to any of its other instances by an edge. If so, a recursive production is 

possible. If a recursive production is found to be the best at the end of an iteration, each 

such chain of subgraphs is abstracted away and replaced by a single vertex [1, 4, and 5]. 

See figure 2.5 for an example of a recursive production.  

 Now, we will give us see an example of SubdueGL‘s operation. Consider the 

input graph shown in figure 2.4, which depicts an artificially domain. In this graph, 

circles represent vertices, and lines represent edges. Also, we assume that all edges have 

the same label, which are not shown for a cleaner appearance.        

 
                  Figure 2.4 Input graph  
 

 SubdueGL starts out by collecting all the unique vertices in the graph and 

expanding them in all possible directions [4]. In the above graph, we see a subgraph 

having vertices {a, b, c} which appear four times, and vertex ‘r’ appears three times. 

Clearly, subgraph {a, b, c} is the most common substructure in this input graph.  Thus, 

SubdueGL gives this subgraph the highest frequency in the top rank. Then SubdueGL try 

to generate the first rule (substructure) from this subgraph. Executing the 

RecursifySubstructure operator results in the recursive grammar rule show in Figure 2.5. 

The production covers two lists of the substructure. 
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   Figure 2.5 First production generated by SubdueGL 

 

After SubdueGL generated the first production, vertex ‘r’ now is the highest 

frequency. Then SubdueGL uses same method to discover the substructure of vertex ‘r’ 

showing on Figure 2.6. However, in the next iteration, SubdueGL cannot find any 

recurring substructures that can be abstracted out. The rule in figure 2.7, substructure S3, 

therefore becomes the final production of SubdueGL.   

 
 
    Figure 2.6 Second production by SubdueGL  Figure 2.7 Last production 
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3 Document Fingerprinting using Graph Grammar Induction 
(DFGGI) 

 
 In the introduction, we addressed the problem caused by using only text patterns 

to detect similarity between documents. Clearly, it would be better to detect similarity not 

only by text pattern, but also by text relationship. Our solution is to represent documents 

using graph grammars. Here, both documents are compared by both text pattern and text 

relationship.  

Our algorithm is as follows. First, DFGGI translates documents into graph format. 

Text patterns are represented by vertices while text relationships are represented by edges 

in the graph. Then, SubdueGL is used to extract the graph grammar. Finally, the graph 

grammars of both documents are compared and the result is the percentage of similarity 

between graph grammar, and hence the documents. DFGGI has two modules which are 

converting modules and matching module. The converting module translates documents 

into graph grammar format. Then, the matching module finds out the percentage of 

similarity between graph grammars.  Figure 3.1 shows the architecture of DFGGI.    

 

 
         

 Figure 3.1 Architectural of DFGGI 
 
 
 
 

Document 
Converting Module Matching 

Module 

Registered documents 

Percentage 

Convert to graph format 
SubdueGL: convert 
to Graph Grammar 

Graph Grammar Text 
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3.1 Converting Module   
  
 The converting module is the first step in DFGGI. The goal of this module is to 

translate documents into graph grammar format. For now, we only focus on the C 

programming language. The converting module can be divided to two processes. In the 

first process documents are translated into conceptual graphs. A conceptual graph is a 

network of concept nodes and relation nodes [8]. The concept nodes represent entities, 

attributes, or events (text patterns). The relation nodes identify the kind of relationship 

between two concept nodes (text relationship). For example, a line printf(“hello”); is 

represented by a conceptual graph shown in figure 3.2. In the second process, graphs are 

converted to graph grammar using SubdueGL. 

 

 
Figure3.2 Example of a conceptual graph   

  

In the first process, the document is converted into graph format. After getting a C 

language document from the user, unnecessary data is removed from the document 

before it is translated into graph format. Insignificant data in the C language such as 

comments in single lines (//), and block comments (/*…*/) are eliminated. By the 

assumption that any text under the double quote symbol (“…”) has the same structural 

meaning in the language, text in double quotes is replaced by the word “STRING”. For 

example, the phrase “printf(“hello”);” will be changed to “printf(STRING);”.          

printf ( STRING ) ; 

<display_monitor>                 <next>                        <next>                       <next>                    <end_command> 
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          Table 3.1 Example of text relationship 
 

After eliminating insignificant data, the next step is to find out text relationship 

between two text patterns. In the converting module, each document is divided to text 

patterns. For example, this phrase “printf(STRING);” is separated into five text patterns, 

which are  printf, (, STRING, ), and ;. In this process, text relationship between two text 

patterns is also added. The example of relationship between text patterns is shown in 

table 3.1. The result of this process is represented in terms of a graph consisting of 

linearly connected vertices. Here, text patterns are written in brackets, and text 

relationships are written in parentheses. The result is: [printf]� (display_monitor) � 

[(]� (next)� [STRING]� (next)� [)]� (next)� [;]� (end_command) shown in figure 

3.2. 

Figure 3.3 shows the convertinger module’s algorithm. The first step of the 

algorithm is to initialize VFL the Variable and Function List (VFL). This list will contain 

the default variables, and functions defined in the C programming language. However, 

when new variables or new user functions are allocated with in documents, these new 

variables and functions are also stored in the VFL list. The algorithm has two while -

loops which are the core of the algorithm. Each line and each token will be extracted one 

by one in order with in those loops. After a token is extracted from a line, a relationship 

will be defined by its own token. Then the graph will be generated by representing a 

vertex as a token, and an edge as its relationship. In some conceptual graphs, a graph may 

Text pattern Text relationship 
printf <display_monitor> 
‘(‘ <next> 
STRING <next> 
‘)’ <next> 
‘;’ <end_command> 
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be defined in different ways. Tokens and their relationships may be changed in their label 

to reflect structural relationships. This modification makes the graph more structurally 

meaningful. This process will be presented in section 4.1.   

 

 

 

 

 

 
 

 

 

 
 Figure 3.3 Converting module’s algorithm 

 

Finally, SubdueGL is called to find the graph grammar. As discussed in section 

2.2, a graph grammar is the abstract of graph driven by the MDL heuristic. It contains 

substructures that compress the input graph the best. Therefore, comparison between two 

documents in their abstract of graphs is more effective than in their original one, because 

an abstract of graph contains only the most significant details of a graph. That is a reason 

why graphs are modified to graph grammar before making a comparison. Other reasons 

are that the size of the graph format is large when it is translated from the large 

document. To store and compare between whole graphs formats are not a good idea 

always feasible. However, the size of a graph grammar normally decreases after it is 

  VFL � give the default variable and function defined in C-language into VFL list   
   while (end of file) do 
         line � CatchLine; // take a new line from Input file  
          while(end of line) do                   

Eliminate insignificant data 

                 token � CatchToken(line); // take a new token from a line 

  relation � Relation(token); // define its relation to the token 
   

   /* it is optional definition in different conceptual graphs   
                 if (token = new variable) then 
                       VFL � AddVariable(token); // add a new variable to the VFL list 
                 if (token = new user function) then 
                       VFL � AddFunction(token);// add a new function to the VFL list  
                 if(token ε variable set or function set) then 
                        token � ChangeLabel(token, VFL); // change token value to our defined structure  
                        relation � ChangeLebel(relation,VFL); // change relation value to our define structure 
                 */  
    Token and its relations will be stored as the vertex and edge of the conceptual graph         
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converted from the original graph. Thus, the idea of reducing a graph’s size before 

comparing to each other is an appropriate one.  

3.2 Matching Module 
 
 The matching module is the last stage of DFGGI. The inputs of this stage are two 

graph grammars. These graph grammars are compared with one another. Alternatively, 

one document can be compared to other registered graph grammars in a database. The 

result is the percentage of similarity between the two grammars. 

In order to match graphs, the matching module applies both concepts of graph 

isomorphism and graph transformation. Graph isomorphism is a mathematical 

perspective on the process whereby two or more domain structures are structurally 

reconciled [7]. It means that if both graphs are isomorphic, they have the same conceptual 

graph. For example, in figure 3.4, graph 1 and graph 2 are isomorphic to each other. 

Thus, it can be concluded that these graphs are the same –one hundred percent similar. 

However, in most cases, isomorphism between two graphs is not obvious. The concept of 

graph transformation might be applied in order to check the isomorphism of these graphs. 

 
Figure 3.4 Graph isomorphism 

     

Graph transformation is the concept for modifying any vertex and edge in a 

graph. However, cost for translating should be considered as well. In this work, we define 

X, Y B C 

D 
B 

C D 

X, Y 

                 
             x 
 
 
                                  
                               y             
                                       z 
                                
 
  

  
 
                                                        z 
                 x                    y   
 
 
 
                 

 
           
                    Graph 1                                                        Graph 2 
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cost of changing (adding or deleting) a vertex or an edge as one unit. In addition, the cost 

of changing labels (the contents in a vertex) is counted by the number of modified labels 

divided by a number of whole labels in a vertex. For example, if we add a vertex and 

delete an edge in a subgraph, transformation cost is equal to two units–one is counted for 

adding a vertex and another for deleting an edge. Meanwhile, if we change two labels 

within a vertex consisting of four labels, the transformation cost of this change is counted 

as 0.5 unit (modified labels divided by total labels equal 2/4 = 0.5).  To have a clear 

picture, this process is shown in figure 3.5.  

          Figure 3.5 Example of Grammar G1 and G2 
  

 As shown in figure 3.5, grammar G1 has two rules (productions) which are S1 

and S2, and grammar G2 has three rules which are P1, P2, and P3. In matching these 

graph grammars, rule S1 in grammar G1 is first compared with all rules in grammar G2 

which are P1, P2 and P3. The pair of rules which requires the least transformation cost is 

selected. By the concept of transformation, the cost in the first comparison between 

subgraph S1 and rules in grammar G2 are 1.5, 6, and 4 units respectively. Certainly, P1 is 

chosen due to its least transformation cost. Then, rule S2 is compared with all rules in 

grammar G2 excluding P1 which is already chosen to be a pair of rule S1. The cost of the 

next comparison is 4, and 2 units respectively. Therefore, rule P3 is selected to be the 

A, B C 

X, Y X X, Y S
2 

S
1 

                 
                                  R1 
 
 
 
                               
                               
                                    R2                    R3 
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closest isomorphic pair of rule S2. Finally, the total transformation cost is computed by 

adding all translation costs of pair (S1, P1) and of pair of (S2, P3) which equal to 1.5 + 2 

= 3.6 units. Thus, grammar G1 and G2 take 3.6 units to convert into isomorphic graphs.  

  
 
Figure 3.6 Pseudo Code for computing the transformation cost 

 
To mention the percentage of similarity between two graph grammars, Sc is a 

quantity representing how many concept graphs in grammar G1 and G2 has in common.  

Based on Dice coefficient [8], Sc is expressed as   

       Sc  =    2n(Gc) / n(G1) + n(G2)  
 

Where n(G) is the number of vertices and edge in grammar G, and n(Gc) is the degree of 

connection of the same concept graph in the original graphs G1 and G2. n(Gc) is 

calculated by subtracting the transformation cost from the n(G). Therefore n(Gc) of 

grammar G1 equals to n(G1) subtracted by translation cost; and n(Gc) of grammar G2 

equal to n(G2) subtracted by translation cost. However, to estimate the similarity between 

two grammars, we will use the less value of n(Gc) between two grammars.  For example 

above, the similarity between grammar G1 and G2 is [2 * (4.5)/ (8) + (15)] = 0.3913 or 

39.13% similarity.    

sub1 � number of sub_graph in G1;    // number of sub graph in Grammar 1 
sub2 � number of sub_graph in G2;    // number of sub graph in Grammar 2 
Total_cost � 0;                                    // initial total cost for transformation 
for(i=0;i<sub1;i++) 
{ 
    MimMatch � 9999.99;   
    for(j=0;j<sub2;j++) 
    { 
        if(G2[j] != NULL)    // if subgraph j in Grammar 2 still exist 
        {    MatchCost � Transformation (G1[i],G2[j]); 
              if(MinMatch > MatchCost) 
             { MinMatch � Matchcost; 
                minsub � j;     } 
        }// end if 
    }// end for 
    save(i, minsub);            // Save a pair that has lowest transformation cost 
    Delete(G2[minsub]);   //  Delete subgraph “minsub” in Grammar 2, because it already used 
    Total_cost � Total_cost + sub_cost; 
}// end for 
return Total_cost             //  All cost for doing transformation  
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4 Evaluation  

In this section, the performance of the DFGGI algorithm is evaluated using both 

artificial and real-world domains. In the artificial domain, we test different kinds of 

conceptual graphs. Sensitivity, frequency of plagiarisms, and file sizes after 

fingerprinting are analyzed. Our empirical documents were modified in different ways to 

test DFGGI‘s performance such as renaming variables and rearranging the structure of 

the document. Our real-world domains involve testing DFGGI is tested in those 

programming exercises to detect similarity of student’s assignments. In both the artificial 

and real-world domains the results from DFGGI are compared to the result from MOSS.       

4.1 Experimental Setup 
 

As mentioned in the last section, DFGGI first translates documents into 

conceptual graphs. Then SubdueGL is called to extract its graph grammar. Finally, graph 

grammars are compared, and the results of similarity between graph grammars can 

represent the similarity between documents. For DFGGI, the conceptual graphs should be 

defined carefully to get the right result in various domains. In this section, we define four 

different kinds of conceptual graph as the benchmark in our study to handle C-language 

documents.  

 
 

Figure 4.1 Part of a C language document 
 

1.  “Simple conceptual graph” is the conceptual graph, in which any relationship 

between text patterns is not considered. The conceptual graph in this case has the same 

structure to that of the original document. Thus, all vertices in this graph are extracted 

exactly from all tokens in the document. All edges or text relationships have the same 

… 
i = 10; 
i = ABC(j);  // ABC() is the user function 
printf(" Number %d",i); 
… 
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value. Thus, all of them are represented as the “NEXT” value. For example, the part of 

the document in figure 4.1 is translated to the simple conceptual graph shown in figure 

4.2.     

 
   

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Example of simple conceptual graph 
 
 2.”Relative conceptual graph” is the conceptual graph in which text 

relationships are also considered. This conceptual graph is quite similar to the simple 

conceptual graph with the exception that all vertices have their own text relationships 

instead of using the same value as in the simple conceptual graph. Thus, each edge 

between vertices is different, and is defined by the specific structure of its vertex. After 

testing our algorithm using C language documents, we found reasonable vertex structures 

and their relationship as shown in Table 4.1.     

Text pattern Relationship 
Frequency function in C language “FUNC” 
Any function which is created by user “UFUN” 
Any declared Variable  “TYPE” 
Any variable in the C language document “VARI” 
Any numeric number  “NUM” 
Anything else “NEXT” 

Table 4.1 Relationship in different kinds of text pattern 
   

; 10 = i 

i = ABC ( j ) ; 

printf ( STRING , i ) ; 

           …                 NEXT                  NEXT                   NEXT                    NEXT 

              NEXT                NEXT                        NEXT              NEXT              NEXT             NEXT             NEXT 

                     NEXT           NEXT                              NEXT              NEXT              NEXT           NEXT         NEXT 



 18 

Relative conceptual graphs are generated in the same way as simple conceptual graphs. 

However, specific edges or text relationship are added followed by its vertex. For 

example, the document in figure 4.1 is translated to the relative concept graph shown in 

figure 4.3.      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Example of relative conceptual graph 
 

3.”Vertex conceptual graph”, is the conceptual graph, in which text relationship 

is not considered. However, label values in each vertex have better defined structure than 

the previous conceptual graphs. For example, when a graph is generated, the algorithm 

gets the token “i”, a variable in the C language document. Vertex conceptual graph does 

not consider “i” as the label value on its vertex. It changes “i” into “VARI” value to make 

its vertices have better defined structure behavior, as shown in Table 4.1. Thus, only 

basic vertex structure remains in this graph. However, all edges or text relationships have 

the same value as the edges in a simple conceptual graph. The example document in 

figure 4.1 is translated to the vertex concept graph is shown in figure 4.4.     

 

 

; 10 = i 

i = ABC ( j ) ; 

printf ( STRING , i ) ; 

           …                 VARI                  NEXT                       NUM                  NEXT 

              VARI                NEXT                          UFUN             NEXT              VARI             NEXT             NEXT 

                        FUNC              NEXT                                  NEXT                  NEXT                VARI                NEXT             NEXT 
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Figure 4.4 Example of vertex conceptual graph 
 

4. “Complex conceptual graph”, is the conceptual graph which is the 

combination of relative and vertex conceptual graph. All vertices in complex conceptual 

graphs are generated in the same manner as vertices in vertex conceptual graphs. 

However, edges in complex conceptual graph are generated by the same structure as 

edges in relative conceptual graphs. The document in figure 4.1 is translated into the 

complex concept graph, shown in figure 4.5.     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Example of complex conceptual graph 
 

VARI 

       …                          VARI            NEXT                         NUM               NEXT 

NUM ; = 

              VARI             NEXT                              UFUN            NEXT                        VARI              NEXT              NEXT 

VARI = UFUN ( VARI ) ; 

                  FUNC             NEXT                                NEXT             NEXT                         VARI              NEXT           NEXT 

FUNC ( STRING , VARI ) ; 

VARI 

       …                          NEXT            NEXT                        NEXT               NEXT 

NUM ; = 

              NEXT             NEXT                              NEXT            NEXT                        NEXT              NEXT              NEXT 

VARI = UFUN ( VARI ) ; 

                  NEXT             NEXT                                NEXT             NEXT                         NEXT              NEXT           NEXT 

FUNC ( STRING , VARI ) ; 
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4.2 Experimental results 

    Several experiments using C language documents are conducted in order to test 

the performance of the DFGGI algorithm. The goal of our algorithm is to detect the 

similarity between documents. So, we create all empirical documents which are modified 

from the same original document. By this way, all artificial documents have the same 

structure as the original. In some documents, only variables are renamed. In others the 

document structure is rearranged. In this section, we have run our empirical documents 

through DFGGI in different conceptual graphs as mentioned in section 4.1. The results of 

our algorithm are compared to the result from MOSS [Aiken, 2004] shown in table 4.2.   

 
Description SIMPLE VERTEX RELATIVE COMPLEX MOSS 
Itself 100% 100% 100% 100% 99% 
Renamed 3 Variables 99.31% 99.84% 98.90% 99.52% 99% 
Renamed 6 Variables 98.51% 99.20% 97.94% 99.01% 99% 
Renamed 9 Variables 97.99% 99.12% 97.42% 99.01% 99% 
Renamed 12 Variables 97.58% 99.12% 97.26% 98.96% 99% 
Renamed 15 Variables 96.66% 99.12% 96.35% 98.96% 99% 
Rearranged 1 times  47.72% 66.49% 74.77% 65.16% 99% 
Rearranged 2 times 56.28% 64.73% 76.88% 65.08% 99% 
Rearranged 3 times 55.85% 67.35% 76.06% 63.84% 99% 
Rearranged 4 times 56.16% 66.41% 75.44% 59.33% 97% 
Rearranged 5 times 54.83% 61.47% 76.47% 60.39% 97% 

Table 4.2 the experimental results 
 

As mentioned before, no written description of MOSS is available. Therefore, we 

cannot explain the results from MOSS in detail. Results from table 4.2 shows that both 

DFGGI and MOSS have the same results, in case of comparing original document which 

documents, in which only variables are modified. The average percentage in this case is 

around 97-99%. However, the results of DFGGI are dissimilar with those of MOSS when 

the original document is compared to rearranged documents. DFGGI has varied results 

from different kinds of conceptual graphs in rearranged documents. Using relative 

conceptual graphs, the highest percentage is around 76%; however, the lowest percentage 
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appearing in simple conceptual graph is around 54%. In this case, MOSS has the average 

percentage of similarity around 98%. 

Next, DFGGI is tested on real-world domains. The tested documents come from 

students who turned in these documents as their solution for programming assignments. 

Three exercises are selected for testing the DFGGI performance. The first exercise is a 

sorting algorithm that selects the best sorting algorithm for a specific input data set. The 

second one is the implementation of the RSA cryptosystem. In both exercises above, the 

average size of student’s documents is small, containing around 300 lines in their source 

codes excluding free space. The last exercise, a pseudo code interpreter, is more 

complicated. The average student’s programming solution in this exercise is 

approximately 600 lines excluding free space. In each exercise, only 19 programming 

assignments written in C-language are selected for testing .  

Based on the results in the artificial test shown in table 4.2, the relative conceptual 

graph was found to be the best conceptual graph to handle the C-language domain. 

Therefore, in this real-world test, DFGGI will generate graphs in the form of relative 

conceptual graphs. Before discussing the results, we make the assumption that students 

may plagiarize someone else’s work if the percentages of similarity in both files are more 

than 10% on MOSS algorithm. Because MOSS only considers the similarity by texture 

comparison, we believe that 10% texture similarity in both files is enough to make a 

conclusion. However, DFGGI works in different way. Text pattern and text relationship 

are also considered in DFGGI.  In this case, the percentage of similarity in both files has 

to be more than 50% in order to conclude that both documents have either structure 
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similarity or text similarity. The DFGGI and MOSS results are shown in table 4.3 

through table 4.8.      
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Table 4.3 Comparison each student’s assignment 1 with MOSS 
 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/ 
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B 

19 4 3 1 1 1 2 32 30 2 2 0 0 9 6 35 32 35 32 0 0 2 2 0 0 2 2 0 0 0 0 6 5 0 0 1 2 

18 12 1 11 8 9 9 0 0 8 6 0 0 0 0 8 7 7 8 6 4 0 0 0 0 0 0 0 0 6 8 9 5 0 0 

17 1 1 1 1 1 2 1 1 3 6 0 0 9 4 1 1 1 1 1 1 4 5 0 0 1 2 9 4 0 0 1 2 

16 10 11 11 13 7 13 5 7 11 17 0 0 14 13 0 0 0 0 3 4 3 3 2 8 1 1 8 8 10 11 

15 11 12 11 12 8 13 0 0 9 13 0 0 18 15 5 5 3 4 4 4 0 0 0 0 0 0 11 9 

14 9 12 5 6 5 9 2 2 7 11 0 0 0 0 0 0 3 4 3 4 0 0 0 0 2 2 

13 0 0 0 0 5 9 2 2 1 2 0 0 0 0 0 0 2 2 0 0 3 3 2 8 

12 0 0 0 0 9 6 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 

11 0 0 3 3 3 5 3 4 5 8 0 0 2 2 3 4 3 4 1 1 

10 4 4 8 9 4 7 1 1 4 6 0 0 5 4 1 1 1 1 

9 4 4 5 5 4 6 31 32 4 5 0 0 13 10 58 59 

8 4 4 6 6 2 3 35 36 4 5 0 0 0 0 

7 14 17 12 12 7 15 3 4 10 16 0 0 

6 0 0 0 0 0 0 0 0 0 0 

5 6 4 9 8 17 20 5 4 

4 0 0 4 4 2 3 

3 15 9 0 0 0 

2 8 7 

                  
                  � MOSS detects some similarity between these two 

documents (at least 10% on both comparison files).         
                   
                   � Both MOSS and DFGGI agree that these   pair 

documents have some similarity.  
         A  � percentage similarity between file Y to file X 
         B  � percentage similarity between file X to file Y       
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Table 4.4 Comparison each student’s assignment 1 with DFGGI 
 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/ 
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B 

19 49 0 45 61 55 15 59 58 54 31 51 23 42 77 54 41 52 31 49 50 48 49 55 17 54 0 46 49 37 0 49 20 46 61 51 48 

18 57 0 44 63 57 20 50 52 59 40 59 34 44 81 57 47 54 36 51 57 49 54 61 25 66 0 55 61 47 0 55 29 52 70 

17 64 0 51 52 63 9 54 39 60 23 64 22 48 68 57 29 58 23 54 42 55 42 60 7 66 0 57 46 47 0 61 17 

16 49 8 44 88 59 48 46 75 56 63 53 54 42 100 49 65 52 61 49 81 51 82 55 46 59 0 44 77 47 0 

15 12 100 7 100 13 100 7 100 10 100 9 100 6 100 7 100 9 100 8 100 8 100 10 100 24 100 6 100 

14 57 0 45 57 53 10 52 48 59 32 57 25 44 75 56 40 54 30 49 48 55 53 59 18 62 0 

13 28 100 9 100 15 100 15 100 18 100 16 100 12 100 16 100 17 100 12 100 14 100 18 100 

12 56 24 41 94 54 52 48 86 55 70 51 62 39 100 52 77 55 73 44 85 49 88 

11 58 0 51 65 62 21 54 53 66 42 58 29 48 81 60 46 61 39 56 57 

10 57 0 47 61 60 18 53 50 58 33 59 28 47 79 59 44 55 32 

9 55 6 45 81 58 38 52 72 60 58 55 47 46 100 53 61 

8 50 0 45 74 55 28 53 66 59 50 56 41 46 93 

7 64 0 57 38 70 0 62 27 73 17 63 2 

6 51 9 36 79 48 36 43 70 48 53 

5 57 10 47 86 63 45 55 77 

4 58 0 47 64 59 19 

3 53 23 42 97  

2 60 0 

                  
                  � DFGGI detects some similarity between these two 

documents (at least 50% on both comparison files).         
                   
                   � Both MOSS and DFGGI agree that these   pair 

documents have some similarity.  
         A  � percentage similarity between file Y to file X 
         B  � percentage similarity between file X to file Y       
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Table 4.5 Comparison each student’s assignment 2 with MOSS 
 
 
 
 
 
 
 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/ 
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 2 2 5 4 0 0 0 0 0 0 3 2 0 0 0 0 2 2 0 0 0 0 

17 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 38 3 3 0 0 0 0 0 0 

15 3 2 0 0 0 0 0 0 2 1 0 0 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 1 2 0 0 0 0 3 5 0 0 0 0 0 0 2 2 1 2 0 0 3 5 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 36 40 6 5 0 0 0 0 0 0 39 43 

9 2 2 0 0 0 0 78 77 7 5 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 2 3 

7 5 5 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 4 2 0 0 0 0 

5 0 0 0 0 0 0 5 7 

4 2 2 0 0 0 0 

3 0 0 0 0 0 

2 0 0 

                  
                  � MOSS detects some similarity between these two 

documents (at least 10% on both comparison files).         
                   
                   � Both MOSS and DFGGI agree that these   pair 

documents have some similarity.  
         A  � percentage similarity between file Y to file X 
         B  � percentage similarity between file X to file Y       
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Table 4.6 Comparison each student’s assignment 2 with DFGGI 
 
 
 
 
 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/ 
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B 

19 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 0 0 100 

18 55 34 64 32 45 0 57 42 61 32 61 11 59 45 56 0 62 27 56 55 60 37 63 33 59 38 52 43 66 25 65 34 71 0 

17 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 

16 50 60 57 56 44 0 49 66 53 60 53 33 53 70 59 12 53 50 46 76 55 63 57 58 45 67 45 67 61 53 

15 50 69 58 66 40 0 51 77 56 67 56 45 53 79 55 14 57 63 47 86 50 67 55 65 51 70 46 77 

14 58 45 65 41 34 0 54 48 60 40 70 28 61 55 57 0 62 36 52 60 64 49 61 40 57 45 

13 52 52 54 43 42 0 51 57 55 46 55 25 51 58 54 0 54 40 58 68 54 52 54 45 

12 52 61 51 49 42 0 51 66 54 55 55 34 50 66 53 4 53 48 47 75 53 59 

11 54 56 56 48 39 0 52 61 54 49 62 35 55 64 58 3 55 44 59 71 

10 57 37 59 28 46 0 62 50 62 34 60 11 58 44 61 0 66 32 

9 46 60 54 57 40 0 57 77 53 59 52 36 49 70 55 10 

8 34 91 37 85 38 0 36 99 36 85 35 64 35 99 

7 51 45 60 43 47 0 51 51 54 39 57 21 

6 46 76 47 66 34 0 49 79 50 71 

5 50 59 51 48 45 0 50 65 

4 50 44 57 39 45 0 

3 17 100 18 100 18 100 

2 50 63 

                  
                  � DFGGI detects some similarity between these two 

documents (at least 50% on both comparison files).         
                   
                   � Both MOSS and DFGGI agree that these   pair 

documents have some similarity.  
         A  � percentage similarity between file Y to file X 
         B  � percentage similarity between file X to file Y       
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 File1/ 
File2 A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B 

19 1 1 0 0 0 0 0 0 0 0 5 17 0 0 3 2 0 0 0 0 1 11 0 0 0 0 3 7 0 0 0 0 0 0 5 5 

18 8 7 0 0 0 0 0 0 0 0 18 57 0 0 10 6 0 0 0 0 5 5 0 0 0 0 5 12 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 11 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0  0 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 12 4 0 0 0 0 0 0 0 0 12 17 0 0 12 3 0 0 0 0 11 5 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 10 8 0 0 0 0 0 0 0 0 5 16 0 0 5 3 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 3 4 0 0 0 0 0 0 0 0 6 32 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 

6 26 7 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 

3 0 0 25 18 

2 0 0 

 
 
 

Table 4.7 Comparison each student’s assignment 3 with MOSS 
 
 
 
 
 
 
 
 

                  
                  � MOSS detects some similarity between these two 

documents (at least 10% on both comparison files).         
                   
                   � Both MOSS and DFGGI agree that these   pair 

documents have some similarity.  
         A  � percentage similarity between file Y to file X 
         B  � percentage similarity between file X to file Y       
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/ 
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B 

19 53 69 47 85 45 80 55 47 47 70 64 26 55 24 60 42 49 76 61 22 59 58 52 58 60 0 53 63 54 55 67 13 56 51 59 22 

18 44 90 35 100 37 100 48 72 42 95 54 50 48 49 50 64 42 99 52 44 48 79 46 83 59 29 39 81 43 76 57 34 52 80 

17 46 70 42 84 41 79 54 50 44 71 53 19 47 21 44 40 42 73 53 17 55 58 45 54 56 0 44 59 43 48 55 6 

16 37 100 31 100 33 100 42 89 34 100 56 73 41 66 43 80 35 100 46 62 38 94 43 100 50 42 33 97 38 93 

15 47 63 43 80 44 77 50 42 45 67 60 21 54 22 51 32 46 72 55 15 50 50 52 56 57 0 49 58 

14 50 56 44 72 46 70 55 37 49 61 61 14 51 13 54 26 47 63 56 8 53 44 52 47 56 0 

13 30 100 26 100 25 100 31 85 28 100 28 100 39 66 33 65 34 78 29 100 43 66 36 96 

12 51 61 44 77 46 75 56 43 48 66 62 19 55 19 54 31 49 71 59 14 52 48 

11 57 71 49 86 48 81 55 46 49 70 59 20 59 28 58 38 53 78 56 15 

10 36 90 29 100 32 100 40 72 34 95 49 50 43 51 42 64 34 98 

9 65 54 55 67 55 62 62 28 60 56 69 7 63 8 68 23 

8 50  83 41 96 42 94 51 61 44 85 52 34 51 39 

7 35 80 34 100 33 96 38 60 32 84 41 34 

6 41 93 34 100 37 100 46 76 38 97 

5 69 58 50 66 54 65 58 28 

4 48 71 44 89 43 84 

3 57 38 59 63 

2 60 37 

 
 
 
 
 
 

Table 4.8 Comparison each student’s assignment 3 with DFGGI 
 
 

 

 

                  
                  � DFGGI detects some similarity between these two 

documents (at least 50% on both comparison files).         
                   
                   � Both MOSS and DFGGI agree that these   pair 

documents have some similarity.  
         A  � percentage similarity between file Y to file X 
         B  � percentage similarity between file X to file Y       
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4.3 Discussion  
 

In the artificial test, it is clear that both DFGGI and MOSS did well in detecting 

similarities between original and modified documents. The average similarity in both 

DFGGI and MOSS were around 97-99%, which is a clear indication of plagiarism. 

However, in documents with rearranged structures, results from DFGGI have lower 

percentage in detecting similarity compared to those using MOSS. That is because when 

the document structures are rearranged, it has a big impact on the way graphs are 

generated. To solve this problem, we have to create conceptual graphs in different ways, 

and select the best conceptual graph which returns the best result specific for each 

domain. Clearly, relative conceptual graphs have the best solution in rearranged 

documents. The average percentage was 76%. However, the average percentage of 

simple, vertex, and complex conceptual graphs are 54%, 65% and 62.7%, respectively. 

Therefore, we chose the relative conceptual graph as the graph format for DFGGI for 

handling C language documents. We also conclude that well defined relationships 

between vertices make DFGGI perform better. 

In real-world experiments DFGGI had a good performance. As mentioned in 

section 3, DFGGI uses both text pattern and text relationship between documents for 

comparison. Thus, DFGGI‘s results present the combination of structure similarity and 

texture similarity between documents. Document structure is the main idea to solve this 

problem. DFGGI detects the similarity by comparing text relationship between 

documents which is represented as an edge in the conceptual graph. By using text pattern 

comparison, DFGGI also detects the texture similarity between documents.  
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Due to comparing programming solutions of students for the same problem, their 

structure could be somewhat similar, while not being due to plagiarism. However, they 

should not have texture similarity among them. For this reason, DFGGI might come up 

with false positives, since it cannot tell whether the DFGGI’s result is due to structure 

similarity, texture similarity or both.  

  In the first exercise shown in table 4.3 and 4.4, DFGGI and MOSS algorithm 

detected many similar document pairs. Some pairs have the high percentage of similarity 

in both MOSS and DFGGI algorithm. In this case, we believe that those pairs are 

duplicated from one another. However, there are some pairs that only are defined by 

DFGGI or MOSS algorithm as similar pairs. In this case, we have to look at documents 

closely to determine whether those pairs are copied. For example, in a pair of document 

number 10 and 11 in exercise 1, DFGGI results in 56% in comparison (shown in table 

4.4) which is high percentage of similarity. However, this pair has only 1 percent of 

similarity on MOSS shown in table 4.3. Focusing on this document pair, we discover that 

both documents are not like each other on their source code. However, their structures are 

quite similar to each another. As shown in the table 4.9, the number of functions present 

in document 10 is approximately equal to the one in document 11. Conclusively, both of 

documents have the same structure. The same consideration is also used for checking 

comparison results which both MOSS and DFGGI agree in detection. Focusing on a pair 

of document number 4 and 9 in exercise 2, and a pair of document number 6 and 18 in 

exercise 3 (shown on table 4.5 though 4.8), both pair are reported plagiarism by both 

algorithms. The percentages of similarity in document 4 and 9 in exercise 2 are 77, and 

57 reported by MOSS, and DFGGI respectively. And 18 and 50 percentages of similarity 
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are detected on a pair of document 6 and 18 in exercise 3. After we look at their source 

code, clearly both pairs are like each other. Thus, MOSS show to good results in these 

detection. However, DFGGI algorithm also performs well. In table 4.9, it also presents 

that both pairs carry, to an extent, the same structure. 

Table 4.9 Counting number of function 
 

In assignment 2 and 3 shown in table 4.5, 4.6, 4.7 and 4.8, most of similar pairs 

tested by MOSS algorithm are also similar pairs when checked by the DFGGI algorithm. 

MOSS returns only a few document pairs as similar, although all tested documents 

should have document structure similarity because they try to solve in the same problem. 

Due to MOSS algorithm, it will return the percentage of similarity when texture 

similarity was detected between documents. Unlike MOSS, DFGGI can find similarity in 

those documents. Not only can DFGGI detect plagiarism, but also the similarity of 

document structure. Comparing to MOSS, DFGGI algorithm has better performance in 

detecting document structure. 

Finally, we would like to mention the registered documents. Registered 

documents are documents that are in our database, and are prepared to make the 

comparison with our desired documents. After the desired document was converted to 

Exercise 1 Exercise 2 Exercise 3 Document number 

&   Description #10 #11 #4 #9 #6 #18 

if  25 28 13 14 40 46 

For 28 31 10 9 2 4 

While 4 2 6 6 2 3 

Declared external 
functions  

10 8 10 10 1 2 
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graph grammar format, we can keep its graph grammar as the registered document. The 

size of original documents can be reduced this way. In DFGGI, the size of registered 

document is reduced from original document around 50% as shown in Table 4.10, and it 

seems to be more decreasing in size when the original documents got bigger. This is the 

great advantage of DFGGI especially for the documents which are frequently compared.   

                          

Original 
Document 

Registered 
Documents 

3k 3k 
8 k 5 k 
11 k 5 k 
14k 6k 
20k 8k 
26k 8k 

 
Table 4.10 Comparison size between original and registered document 
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5 Conclusions 
   

Digital documents nowadays are easily plagiarized. Thus, it is important to find 

ways to detect similarities between documents. Document fingerprinting is a method to 

do so. Current algorithms only focus on finding text pattern similarity between 

documents, but not text relationship. To show two of any documents are similar to one 

another, document fingerprinting must compare both text pattern and text relationship of 

both documents. Thus, in this work, we present a new concept using graph grammar 

induction for document fingerprinting, especially in the C language. Initially, the 

document is converted to conceptual graph. We also define four different conceptual 

graphs to handle C-language document. Clearly, the relative conceptual graph is the best 

performance’s behavior in this domain. Relative conceptual graph is more consider in 

text relationship than other conceptual graphs. Thus, we conclude that if relationships 

between textures are more considered, DFGGI will do better results.     

After documents are translated into conceptual graph, SubdueGL is called to 

extract its graph grammar. Graph grammar can enables the specification of elaborate 

graphs using simple production rules. Thus, the results of similarity comparison between 

graph grammars can represent the similarity between documents. Finally, the percentage 

of similarity between documents is return after our application is operated. As mention in 

experience, not only can DFGGI detect plagiarize, but also can it detect the document 

structure. We assume that all programming solution in the same exercise should share 

document structure in solving problem. However, in the last experience, MOSS almost 

can not detect any similarity between student’s assignments, although they are in the 
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same exercise. Unlike MOSS, DFGGI is better detecting document similarity in that 

exercise.  

In this paper, we also study in graph characteristics, graph grammar and the graph 

isomorphism. This research filed provides many attractive topics in both theory and 

application, and is expected to be one of the key fields in document fingerprinting 

research.    

In the future, apart from investigating more conceptual graph relevance detection 

algorithms to comply with all conditions necessary and to establish a powerful algorithm, 

several other issues are on our agenda. Also, using DFGGI in different domains, such as 

human language understanding, may be successful. 
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