

DOCUMENT FINGERPRINTING

USING GRAPH GRAMMAR

INDUCTION

By

PRACH APIRATIKUL

Master of Science

Oklahoma State University

2004

Submitted to the Faculty of the

Graduate College of the
Oklahoma State University

In partial fulfillment of
The requirement for

The Degree of
MASTER OF SCIENCE

July, 2004

 ii

DOCUMENT FINGERPRINTING

USING GRAPH GRAMMAR

INDUCTION

Thesis Approved:

 Dr. István Jónyer
 Thesis Adviser

 Dr. Johnson Thomas

 Dr. Debao Chen

 Dr. Al Carlozzi

Dean of Graduate College

 iii

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my advisor Dr. István Jónyer for

all guidance, advice and enthusiasm whenever I was in need, and for identifying this

topic. I’m thankful for Professor Johnson Thomas and Debao Chen for examining my

thesis. I am also thankful for Paveen Apiratikul, a Ph.D. candidate, for all generous

assistance during this time. Finally, I would like to take this opportunity to express my

profound gratitude to my beloved parents for financial support, my relatives and my

fiancée for all inspiration, encouragement and patience during my studies at OSU.

 iv

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION ...1

2 RELATED WORK..3

2.1 DOCUMENT FINGERPRINTING AND MOSS ...3
2.2 SUBDUE..5

3 DOCUMENT FINGERPRINTING USING GRAPH GRAMMAR
INDUCTION (DFGGI) ...9

3.1 CONVERTING MODULE ...10
3.2 MATCHING MODULE...13

4 EVALUATION..16

4.1 EXPERIMENTAL SETUP ..16
4.2 EXPERIMENTAL RESULTS...20
4.3 DISCUSSION..29

5 CONCLUSIONS..33

REFERENCES..35

 v

LIST OF TABLES

Table Page

TABLE 3.1 EXAMPLE OF TEXT RELATIONSHIP... 11

TABLE 4.1 RELATIONSHIP IN DIFFERENT KINDS OF TEXT PATTERN..................................... 17

TABLE 4.2 THE EXPERIMENTAL RESULTS .. 20

TABLE 4.3 COMPARISON EACH STUDENT’S ASSIGNMENT 1 WITH MOSS 23

TABLE 4.4 COMPARISON EACH STUDENT’S ASSIGNMENT 1 WITH DFGGI............................ 24

TABLE 4.5 COMPARISON EACH STUDENT’S ASSIGNMENT 2 WITH MOSS 25

TABLE 4.6 COMPARISON EACH STUDENT’S ASSIGNMENT 2 WITH DFGGI............................ 26

TABLE 4.7 COMPARISON EACH STUDENT’S ASSIGNMENT 3 WITH MOSS 27

TABLE 4.8 COMPARISON EACH STUDENT’S ASSIGNMENT 3 WITH DFGGI............................ 28

TABLE 4.9 COUNTING NUMBER OF FUNCTION .. 31

TABLE 4.10 COMPARISON SIZE BETWEEN ORIGINAL AND REGISTERED DOCUMENT 32

 vi

LIST OF FIGURES

Figure Page

FIGURE 2.1 GENERAL ARCHITECTURAL FOR DOCUMENT FINGERPRINTING.......................... 3

FIGURE 2.2 FINGERPRINTING SOME SAMPLE TEXT.. 5

FIGURE2.3 SUBDUE’S DISCOVERY ALGORITHM [6]... 6

FIGURE 2.4 INPUT GRAPH .. 7

FIGURE 2.5 FIRST PRODUCTION GENERATED BY SUBDUEGL .. 8

FIGURE 2.6 SECOND PRODUCTION BY SUBDUEGL ... 8

FIGURE 2.7 LAST PRODUCTION .. 8

FIGURE 3.1 ARCHITECTURAL OF DFGGI ... 9

FIGURE 3.2 EXAMPLE OF A CONCEPTUAL GRAPH.. 10

FIGURE 3.3 CONVERTING MODULE’S ALGORITHM .. 12

FIGURE 3.4 GRAPH ISOMORPHISM ... 13

FIGURE 3.5 EXAMPLE OF GRAMMAR G1 AND G2……………………….…………………….…...14

FIGURE 3.6 PSEUDO CODE FOR COMPUTING THE TRANSFORMATION COST 15

 1

1 Introduction

 Nowadays, digital documents are very easily counterfeited especially in software

source code. People tend to represent someone else’s work or online documents as if they

were their own. For example, in schools and universities, students seem to occasionally

plagiarize their assignments from their friends or the Web. It is becoming a serious issue

to prove whether someone’s document is his own work or not.

 Few decades ago, document fingerprinting techniques were proposed to detect

and reveal the similarity between documents. These techniques such as MOSS [6], and

SCAM[9] work well in finding the complete or partial duplication of documents by

comparing a desired document with registered documents. However, most document

fingerprinting techniques only focus on detecting the similar text pattern between

documents, but are not interested in detecting the relationships among text elements. In

practice, to show that documents are similar, document fingerprinting has to compare

both text pattern and text relationship. Text patterns are words, phrases or an alphabet in

the document. Text relationship is the association between two text patterns in the

document. These can be represented by graphs, where nodes act as text patterns and

edges act as text relationships [5]. For example, the phrase “Joe loves Mary” can be

represented in a graph as [Joe] � (subj) �[love] � (obj) �[Mary], where phrases in

“[]” represent text patterns, and phases in “()” represent text relationships).

 Document fingerprinting using both text pattern and text relationship methods

can evaluate the similarity between two documents more effectively. For example, phrase

1: “Jim is a dog” and phrase 2: “Jimi’s dog” are compared to each other. If document

fingerprinting focuses only text pattern, such as MOSS, phrase 1 will be converted to a

 2

set of {“Jimisdog”} because only significant words are chosen. More detail is described

in section 2.1), and phrase 2 will be converted to a set of {“Jimisdog”}. Thus, the

comparison of both sets, both phrases are totally the same. However, the meaning of both

phrases is absolutely different. On the other hand, if document fingerprinting involves

both text pattern and text relationship detection, phrase 1 can be represented with a graph

like [Jim] �(subj)�[is]�(obj)�[dog], and phrase 2 can be represented with a graph

like [Jimi’s dog]�(null). Clearly, both graphs are different.

 In this paper, we will transfer documents into graph format that will be

represented as nodes and edges. Next, we will find their graph grammar using Subdue [2]

(section 2.4). Finally, we will measure the similarity between their graph grammars by

using the concept of graph isomorphism [7], and graph transformation.

The next section will explain document fingerprinting, and, in particular, MOSS

[section 2.1]. Subdue is described in section 2.2. Our method and document

fingerprinting algorithm using graph grammar induction is discussed in section 3. Finally,

section 4 gives a conclusion and future work.

 3

2 Related Work

 To understand how document fingerprinting works, section 2.1 explains it in

terms of MOSS [6], one leading document fingerprinting algorithm. In section 2.2 we

will introduce Subdue, a program using for graph grammar extraction.

2.1 Document Fingerprinting and MOSS

Document fingerprinting is a technique for detecting document-based textual

simirality. As the document is becoming more avariable electronically, it is easily copied.

Therefore, this method is widely used to detection of copyright violations and plagiarism

not only for registered documents--documents contained in a database--but also for

documents available over internet. More information about document fingerprinting is

available in [3], [6] and [9]. The general architecture for document fingerprinting is

shown in Figure 2.1

Figure 2.1 General architectural for document fingerprinting

One well known doucument fingerprinting algorithm is MOSS, which stands for

Measure Of Software Similarity. It was developed at Berkeley in 1994. MOSS works

primarily on software source code, as the name suggest. It can work with different

programming languages, including C, C++, Java, Pascal, etc.

Noise Module
Document

A Hash Function

Document
B

Noise Module Hash Function

Matching
Result

Set of hash value sequence

 4

MOSS works as follows. First, it extracts significant words or phrases from the

desired documents. This means that all uninteresting or noise data are ignored by

applying whitespace insensititivity, and noise suppression [3]. Whitespace insensitivity

leaves strings unaffected. Normally whitespace insensitivity ignores whitespace

characters, capitalization and punctuation. Noise suppression is short or common words

that we are not interested in, such as “the”, “a”, etc. However, whitespace insensititivity

and noise suppression can be defined differently depending on various domains or

programming languages.

After the documents are clean of noise, MOSS combines all text in the document

together and divides them to small sub-strings by the length of k-gram as in Figure

2.2(b), 2.2(c). The length of k-gram is the number of alphabets in each sub-string and is

individually defined by each user. Then the sequence of sub-string of length k-gram is

created. The index number for representing each sub-string is added by using hashing

function shown in Figure 2.2(d). Finally, these sequences of index numbers of the two

documents are compared to find similarity between the two documents. However, in

large documents, we will get a long sequence index. To solve this problem, MOSS

chooses only a conditional sequence list of indices, which is defined by user. For

example, in Figure 2.2(e), we consider only the sequence of hash values which can be

divided by 4 (0 mod 4).

 5

 Figure 2.2 Fingerprinting some sample text

2.2 Subdue

Subdue [2] is an algorithm for discovering knowledge in structural data. It can

discover interesting and repetitive subgraphs in a labeled graph representation using the

minimum description length (MDL) principle, which seeks to minimize the description

length of the entire data set. The substructure discovery algorithm used by Subdue is a

beam search. Subdue’s main discovery algorithm is shown in figure 2.3. Subdue first

extends finds all possible single-vertex substructures in another input graph. Each

substructure is then evaluated using the Minimum Description Length heuristic, and

inserted in the ChildList, in order by the heuristic value [6]. Then the main search is

called, which extends each substructure in all possible ways. is called, and return the best

substructure in ChildList which contains the minimum MDL value and also its length is

less than beam width. By this step, a substructure is extracted and original graph is

compressed by replacing all instances of discovery substructures as a single vertex, which

represents the substructure’s instance. Subdue will repeat this process and will until it

Fingerprinting , fingerprinting.
(a) sample text form

fingerpirntingfingerprinting
(b) text with removing noise

fing erpi rnti ngfi nger prin ting
(c) the sequence of 4-grams derived from the text

72 75 68 50 18 90 24
(d) A hypothetical sequence of hashes of the 4-grams

72 68 24
(e) The sequence of hashes selected using 0 mod 4

 6

terminates when no more substructures are discovered found. The search returns the best

substructure, which has the minimum MDL value. After this step, the best substructure is

extracted and replaced by a single vertex in the original input graph, which represents the

substructure’s instance. This way the graph is compressed. More details about Subdue

can be found in [1], [2], [4], [5], and [6].

 Figure2.3 Subdue’s discovery algorithm [6]

 In our work, we use SubdueGL [1, 4, 5], an algorithm based on Subdue to

generate recursive graph grammars. SubdueGL has more operators that allow SubdueGL

more potential performance into extracting graph grammars. One of its most interesting

operators is the Recursify Substructure search operator which can detect and create

recursive productions. This operator adds the connecting edge to the substructure and

collects all possible chains of instances during the discovery operator.

Subdue (Graph, Beam Width, MaxBest, MaxSubSize, Limit)
ParentList = {}
ChildList = {}
BestList = {}
ProcessedSubs = 0

Create a substructure from each unique vertex label and its single-

vertex instances; Insert the resulting substructure in ParentList

while ProcessedSubs <= Limit and ParentList is not empty do
 while ParentList is not empty do
 Parent = RemoveHead(ParentList)
 Extend each instance of Parent in all possible ways
 Group the extended instance into Child substructures
 for each Child do
 if SizeOf (child) <= MazSubSize then
 Evaluate the Child
 Insert Child in ChildList in order by value
 if Length (ChildList) > BeamWidth then
 Destroy the substructure at the end of ChildList
 ProcessedSubs = ProcessedSubs +1
 Insert Parent in BestList in order by value
 if Length(BestList) > MaxBest then
 Destroy the substructure at the end of BestList
 Switch ParentList and ChildList
return BestList

 7

RecursifySubstructure starts by checking each instance of the substructure to see if it is

connected to any of its other instances by an edge. If so, a recursive production is

possible. If a recursive production is found to be the best at the end of an iteration, each

such chain of subgraphs is abstracted away and replaced by a single vertex [1, 4, and 5].

See figure 2.5 for an example of a recursive production.

 Now, we will give us see an example of SubdueGL‘s operation. Consider the

input graph shown in figure 2.4, which depicts an artificially domain. In this graph,

circles represent vertices, and lines represent edges. Also, we assume that all edges have

the same label, which are not shown for a cleaner appearance.

 Figure 2.4 Input graph

 SubdueGL starts out by collecting all the unique vertices in the graph and

expanding them in all possible directions [4]. In the above graph, we see a subgraph

having vertices {a, b, c} which appear four times, and vertex ‘r’ appears three times.

Clearly, subgraph {a, b, c} is the most common substructure in this input graph. Thus,

SubdueGL gives this subgraph the highest frequency in the top rank. Then SubdueGL try

to generate the first rule (substructure) from this subgraph. Executing the

RecursifySubstructure operator results in the recursive grammar rule show in Figure 2.5.

The production covers two lists of the substructure.

a
a

c
c

b
b

a
a

c
c

b
b

a
a

c
c

b
b

a
a

c
c

b
b

k
k

r
r

r
r

r
r

 8

 Figure 2.5 First production generated by SubdueGL

After SubdueGL generated the first production, vertex ‘r’ now is the highest

frequency. Then SubdueGL uses same method to discover the substructure of vertex ‘r’

showing on Figure 2.6. However, in the next iteration, SubdueGL cannot find any

recurring substructures that can be abstracted out. The rule in figure 2.7, substructure S3,

therefore becomes the final production of SubdueGL.

 Figure 2.6 Second production by SubdueGL Figure 2.7 Last production

S1 a
a

c
c

b
b

r

a

c

b

S1

r S2

S2

S3 S1 k

S2

S1

 9

3 Document Fingerprinting using Graph Grammar Induction
(DFGGI)

 In the introduction, we addressed the problem caused by using only text patterns

to detect similarity between documents. Clearly, it would be better to detect similarity not

only by text pattern, but also by text relationship. Our solution is to represent documents

using graph grammars. Here, both documents are compared by both text pattern and text

relationship.

Our algorithm is as follows. First, DFGGI translates documents into graph format.

Text patterns are represented by vertices while text relationships are represented by edges

in the graph. Then, SubdueGL is used to extract the graph grammar. Finally, the graph

grammars of both documents are compared and the result is the percentage of similarity

between graph grammar, and hence the documents. DFGGI has two modules which are

converting modules and matching module. The converting module translates documents

into graph grammar format. Then, the matching module finds out the percentage of

similarity between graph grammars. Figure 3.1 shows the architecture of DFGGI.

 Figure 3.1 Architectural of DFGGI

Document
Converting Module Matching

Module

Registered documents

Percentage

Convert to graph format
SubdueGL: convert
to Graph Grammar

Graph Grammar Text

 10

3.1 Converting Module

 The converting module is the first step in DFGGI. The goal of this module is to

translate documents into graph grammar format. For now, we only focus on the C

programming language. The converting module can be divided to two processes. In the

first process documents are translated into conceptual graphs. A conceptual graph is a

network of concept nodes and relation nodes [8]. The concept nodes represent entities,

attributes, or events (text patterns). The relation nodes identify the kind of relationship

between two concept nodes (text relationship). For example, a line printf(“hello”); is

represented by a conceptual graph shown in figure 3.2. In the second process, graphs are

converted to graph grammar using SubdueGL.

Figure3.2 Example of a conceptual graph

In the first process, the document is converted into graph format. After getting a C

language document from the user, unnecessary data is removed from the document

before it is translated into graph format. Insignificant data in the C language such as

comments in single lines (//), and block comments (/*…*/) are eliminated. By the

assumption that any text under the double quote symbol (“…”) has the same structural

meaning in the language, text in double quotes is replaced by the word “STRING”. For

example, the phrase “printf(“hello”);” will be changed to “printf(STRING);”.

printf (STRING) ;

<display_monitor> <next> <next> <next> <end_command>

 11

 Table 3.1 Example of text relationship

After eliminating insignificant data, the next step is to find out text relationship

between two text patterns. In the converting module, each document is divided to text

patterns. For example, this phrase “printf(STRING);” is separated into five text patterns,

which are printf, (, STRING,), and ;. In this process, text relationship between two text

patterns is also added. The example of relationship between text patterns is shown in

table 3.1. The result of this process is represented in terms of a graph consisting of

linearly connected vertices. Here, text patterns are written in brackets, and text

relationships are written in parentheses. The result is: [printf]� (display_monitor) �

[(]� (next)� [STRING]� (next)� [)]� (next)� [;]� (end_command) shown in figure

3.2.

Figure 3.3 shows the convertinger module’s algorithm. The first step of the

algorithm is to initialize VFL the Variable and Function List (VFL). This list will contain

the default variables, and functions defined in the C programming language. However,

when new variables or new user functions are allocated with in documents, these new

variables and functions are also stored in the VFL list. The algorithm has two while -

loops which are the core of the algorithm. Each line and each token will be extracted one

by one in order with in those loops. After a token is extracted from a line, a relationship

will be defined by its own token. Then the graph will be generated by representing a

vertex as a token, and an edge as its relationship. In some conceptual graphs, a graph may

Text pattern Text relationship
printf <display_monitor>
‘(‘ <next>
STRING <next>
‘)’ <next>
‘;’ <end_command>

 12

be defined in different ways. Tokens and their relationships may be changed in their label

to reflect structural relationships. This modification makes the graph more structurally

meaningful. This process will be presented in section 4.1.

 Figure 3.3 Converting module’s algorithm

Finally, SubdueGL is called to find the graph grammar. As discussed in section

2.2, a graph grammar is the abstract of graph driven by the MDL heuristic. It contains

substructures that compress the input graph the best. Therefore, comparison between two

documents in their abstract of graphs is more effective than in their original one, because

an abstract of graph contains only the most significant details of a graph. That is a reason

why graphs are modified to graph grammar before making a comparison. Other reasons

are that the size of the graph format is large when it is translated from the large

document. To store and compare between whole graphs formats are not a good idea

always feasible. However, the size of a graph grammar normally decreases after it is

 VFL � give the default variable and function defined in C-language into VFL list
 while (end of file) do
 line � CatchLine; // take a new line from Input file
 while(end of line) do

Eliminate insignificant data

 token � CatchToken(line); // take a new token from a line

 relation � Relation(token); // define its relation to the token

 /* it is optional definition in different conceptual graphs
 if (token = new variable) then
 VFL � AddVariable(token); // add a new variable to the VFL list
 if (token = new user function) then
 VFL � AddFunction(token);// add a new function to the VFL list
 if(token ε variable set or function set) then
 token � ChangeLabel(token, VFL); // change token value to our defined structure
 relation � ChangeLebel(relation,VFL); // change relation value to our define structure
 */
 Token and its relations will be stored as the vertex and edge of the conceptual graph

 13

converted from the original graph. Thus, the idea of reducing a graph’s size before

comparing to each other is an appropriate one.

3.2 Matching Module

 The matching module is the last stage of DFGGI. The inputs of this stage are two

graph grammars. These graph grammars are compared with one another. Alternatively,

one document can be compared to other registered graph grammars in a database. The

result is the percentage of similarity between the two grammars.

In order to match graphs, the matching module applies both concepts of graph

isomorphism and graph transformation. Graph isomorphism is a mathematical

perspective on the process whereby two or more domain structures are structurally

reconciled [7]. It means that if both graphs are isomorphic, they have the same conceptual

graph. For example, in figure 3.4, graph 1 and graph 2 are isomorphic to each other.

Thus, it can be concluded that these graphs are the same –one hundred percent similar.

However, in most cases, isomorphism between two graphs is not obvious. The concept of

graph transformation might be applied in order to check the isomorphism of these graphs.

Figure 3.4 Graph isomorphism

Graph transformation is the concept for modifying any vertex and edge in a

graph. However, cost for translating should be considered as well. In this work, we define

X, Y B C

D
B

C D

X, Y

 x

 y
 z

 z
 x y

 Graph 1 Graph 2

 14

cost of changing (adding or deleting) a vertex or an edge as one unit. In addition, the cost

of changing labels (the contents in a vertex) is counted by the number of modified labels

divided by a number of whole labels in a vertex. For example, if we add a vertex and

delete an edge in a subgraph, transformation cost is equal to two units–one is counted for

adding a vertex and another for deleting an edge. Meanwhile, if we change two labels

within a vertex consisting of four labels, the transformation cost of this change is counted

as 0.5 unit (modified labels divided by total labels equal 2/4 = 0.5). To have a clear

picture, this process is shown in figure 3.5.

 Figure 3.5 Example of Grammar G1 and G2

 As shown in figure 3.5, grammar G1 has two rules (productions) which are S1

and S2, and grammar G2 has three rules which are P1, P2, and P3. In matching these

graph grammars, rule S1 in grammar G1 is first compared with all rules in grammar G2

which are P1, P2 and P3. The pair of rules which requires the least transformation cost is

selected. By the concept of transformation, the cost in the first comparison between

subgraph S1 and rules in grammar G2 are 1.5, 6, and 4 units respectively. Certainly, P1 is

chosen due to its least transformation cost. Then, rule S2 is compared with all rules in

grammar G2 excluding P1 which is already chosen to be a pair of rule S1. The cost of the

next comparison is 4, and 2 units respectively. Therefore, rule P3 is selected to be the

A, B C

X, Y X X, Y S
2

S
1

 R1

 R2 R3

 G1

A,B,C,D C

X T X H

X, Y X, Y X

P
1

P
2

P
3

 R5

 R1 R2 R3

 R3 R1

G2

 15

closest isomorphic pair of rule S2. Finally, the total transformation cost is computed by

adding all translation costs of pair (S1, P1) and of pair of (S2, P3) which equal to 1.5 + 2

= 3.6 units. Thus, grammar G1 and G2 take 3.6 units to convert into isomorphic graphs.

Figure 3.6 Pseudo Code for computing the transformation cost

To mention the percentage of similarity between two graph grammars, Sc is a

quantity representing how many concept graphs in grammar G1 and G2 has in common.

Based on Dice coefficient [8], Sc is expressed as

 Sc = 2n(Gc) / n(G1) + n(G2)

Where n(G) is the number of vertices and edge in grammar G, and n(Gc) is the degree of

connection of the same concept graph in the original graphs G1 and G2. n(Gc) is

calculated by subtracting the transformation cost from the n(G). Therefore n(Gc) of

grammar G1 equals to n(G1) subtracted by translation cost; and n(Gc) of grammar G2

equal to n(G2) subtracted by translation cost. However, to estimate the similarity between

two grammars, we will use the less value of n(Gc) between two grammars. For example

above, the similarity between grammar G1 and G2 is [2 * (4.5)/ (8) + (15)] = 0.3913 or

39.13% similarity.

sub1 � number of sub_graph in G1; // number of sub graph in Grammar 1
sub2 � number of sub_graph in G2; // number of sub graph in Grammar 2
Total_cost � 0; // initial total cost for transformation
for(i=0;i<sub1;i++)
{
 MimMatch � 9999.99;
 for(j=0;j<sub2;j++)
 {
 if(G2[j] != NULL) // if subgraph j in Grammar 2 still exist
 { MatchCost � Transformation (G1[i],G2[j]);
 if(MinMatch > MatchCost)
 { MinMatch � Matchcost;
 minsub � j; }
 }// end if
 }// end for
 save(i, minsub); // Save a pair that has lowest transformation cost
 Delete(G2[minsub]); // Delete subgraph “minsub” in Grammar 2, because it already used
 Total_cost � Total_cost + sub_cost;
}// end for
return Total_cost // All cost for doing transformation

 16

4 Evaluation

In this section, the performance of the DFGGI algorithm is evaluated using both

artificial and real-world domains. In the artificial domain, we test different kinds of

conceptual graphs. Sensitivity, frequency of plagiarisms, and file sizes after

fingerprinting are analyzed. Our empirical documents were modified in different ways to

test DFGGI‘s performance such as renaming variables and rearranging the structure of

the document. Our real-world domains involve testing DFGGI is tested in those

programming exercises to detect similarity of student’s assignments. In both the artificial

and real-world domains the results from DFGGI are compared to the result from MOSS.

4.1 Experimental Setup

As mentioned in the last section, DFGGI first translates documents into

conceptual graphs. Then SubdueGL is called to extract its graph grammar. Finally, graph

grammars are compared, and the results of similarity between graph grammars can

represent the similarity between documents. For DFGGI, the conceptual graphs should be

defined carefully to get the right result in various domains. In this section, we define four

different kinds of conceptual graph as the benchmark in our study to handle C-language

documents.

Figure 4.1 Part of a C language document

1. “Simple conceptual graph” is the conceptual graph, in which any relationship

between text patterns is not considered. The conceptual graph in this case has the same

structure to that of the original document. Thus, all vertices in this graph are extracted

exactly from all tokens in the document. All edges or text relationships have the same

…
i = 10;
i = ABC(j); // ABC() is the user function
printf(" Number %d",i);
…

 17

value. Thus, all of them are represented as the “NEXT” value. For example, the part of

the document in figure 4.1 is translated to the simple conceptual graph shown in figure

4.2.

Figure 4.2 Example of simple conceptual graph

 2.”Relative conceptual graph” is the conceptual graph in which text

relationships are also considered. This conceptual graph is quite similar to the simple

conceptual graph with the exception that all vertices have their own text relationships

instead of using the same value as in the simple conceptual graph. Thus, each edge

between vertices is different, and is defined by the specific structure of its vertex. After

testing our algorithm using C language documents, we found reasonable vertex structures

and their relationship as shown in Table 4.1.

Text pattern Relationship
Frequency function in C language “FUNC”
Any function which is created by user “UFUN”
Any declared Variable “TYPE”
Any variable in the C language document “VARI”
Any numeric number “NUM”
Anything else “NEXT”

Table 4.1 Relationship in different kinds of text pattern

; 10 = i

i = ABC (j) ;

printf (STRING , i) ;

 … NEXT NEXT NEXT NEXT

 NEXT NEXT NEXT NEXT NEXT NEXT NEXT

 NEXT NEXT NEXT NEXT NEXT NEXT NEXT

 18

Relative conceptual graphs are generated in the same way as simple conceptual graphs.

However, specific edges or text relationship are added followed by its vertex. For

example, the document in figure 4.1 is translated to the relative concept graph shown in

figure 4.3.

Figure 4.3 Example of relative conceptual graph

3.”Vertex conceptual graph”, is the conceptual graph, in which text relationship

is not considered. However, label values in each vertex have better defined structure than

the previous conceptual graphs. For example, when a graph is generated, the algorithm

gets the token “i”, a variable in the C language document. Vertex conceptual graph does

not consider “i” as the label value on its vertex. It changes “i” into “VARI” value to make

its vertices have better defined structure behavior, as shown in Table 4.1. Thus, only

basic vertex structure remains in this graph. However, all edges or text relationships have

the same value as the edges in a simple conceptual graph. The example document in

figure 4.1 is translated to the vertex concept graph is shown in figure 4.4.

; 10 = i

i = ABC (j) ;

printf (STRING , i) ;

 … VARI NEXT NUM NEXT

 VARI NEXT UFUN NEXT VARI NEXT NEXT

 FUNC NEXT NEXT NEXT VARI NEXT NEXT

 19

Figure 4.4 Example of vertex conceptual graph

4. “Complex conceptual graph”, is the conceptual graph which is the

combination of relative and vertex conceptual graph. All vertices in complex conceptual

graphs are generated in the same manner as vertices in vertex conceptual graphs.

However, edges in complex conceptual graph are generated by the same structure as

edges in relative conceptual graphs. The document in figure 4.1 is translated into the

complex concept graph, shown in figure 4.5.

Figure 4.5 Example of complex conceptual graph

VARI

 … VARI NEXT NUM NEXT

NUM ; =

 VARI NEXT UFUN NEXT VARI NEXT NEXT

VARI = UFUN (VARI) ;

 FUNC NEXT NEXT NEXT VARI NEXT NEXT

FUNC (STRING , VARI) ;

VARI

 … NEXT NEXT NEXT NEXT

NUM ; =

 NEXT NEXT NEXT NEXT NEXT NEXT NEXT

VARI = UFUN (VARI) ;

 NEXT NEXT NEXT NEXT NEXT NEXT NEXT

FUNC (STRING , VARI) ;

 20

4.2 Experimental results

 Several experiments using C language documents are conducted in order to test

the performance of the DFGGI algorithm. The goal of our algorithm is to detect the

similarity between documents. So, we create all empirical documents which are modified

from the same original document. By this way, all artificial documents have the same

structure as the original. In some documents, only variables are renamed. In others the

document structure is rearranged. In this section, we have run our empirical documents

through DFGGI in different conceptual graphs as mentioned in section 4.1. The results of

our algorithm are compared to the result from MOSS [Aiken, 2004] shown in table 4.2.

Description SIMPLE VERTEX RELATIVE COMPLEX MOSS
Itself 100% 100% 100% 100% 99%
Renamed 3 Variables 99.31% 99.84% 98.90% 99.52% 99%
Renamed 6 Variables 98.51% 99.20% 97.94% 99.01% 99%
Renamed 9 Variables 97.99% 99.12% 97.42% 99.01% 99%
Renamed 12 Variables 97.58% 99.12% 97.26% 98.96% 99%
Renamed 15 Variables 96.66% 99.12% 96.35% 98.96% 99%
Rearranged 1 times 47.72% 66.49% 74.77% 65.16% 99%
Rearranged 2 times 56.28% 64.73% 76.88% 65.08% 99%
Rearranged 3 times 55.85% 67.35% 76.06% 63.84% 99%
Rearranged 4 times 56.16% 66.41% 75.44% 59.33% 97%
Rearranged 5 times 54.83% 61.47% 76.47% 60.39% 97%

Table 4.2 the experimental results

As mentioned before, no written description of MOSS is available. Therefore, we

cannot explain the results from MOSS in detail. Results from table 4.2 shows that both

DFGGI and MOSS have the same results, in case of comparing original document which

documents, in which only variables are modified. The average percentage in this case is

around 97-99%. However, the results of DFGGI are dissimilar with those of MOSS when

the original document is compared to rearranged documents. DFGGI has varied results

from different kinds of conceptual graphs in rearranged documents. Using relative

conceptual graphs, the highest percentage is around 76%; however, the lowest percentage

 21

appearing in simple conceptual graph is around 54%. In this case, MOSS has the average

percentage of similarity around 98%.

Next, DFGGI is tested on real-world domains. The tested documents come from

students who turned in these documents as their solution for programming assignments.

Three exercises are selected for testing the DFGGI performance. The first exercise is a

sorting algorithm that selects the best sorting algorithm for a specific input data set. The

second one is the implementation of the RSA cryptosystem. In both exercises above, the

average size of student’s documents is small, containing around 300 lines in their source

codes excluding free space. The last exercise, a pseudo code interpreter, is more

complicated. The average student’s programming solution in this exercise is

approximately 600 lines excluding free space. In each exercise, only 19 programming

assignments written in C-language are selected for testing .

Based on the results in the artificial test shown in table 4.2, the relative conceptual

graph was found to be the best conceptual graph to handle the C-language domain.

Therefore, in this real-world test, DFGGI will generate graphs in the form of relative

conceptual graphs. Before discussing the results, we make the assumption that students

may plagiarize someone else’s work if the percentages of similarity in both files are more

than 10% on MOSS algorithm. Because MOSS only considers the similarity by texture

comparison, we believe that 10% texture similarity in both files is enough to make a

conclusion. However, DFGGI works in different way. Text pattern and text relationship

are also considered in DFGGI. In this case, the percentage of similarity in both files has

to be more than 50% in order to conclude that both documents have either structure

 22

similarity or text similarity. The DFGGI and MOSS results are shown in table 4.3

through table 4.8.

 23

Table 4.3 Comparison each student’s assignment 1 with MOSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

19 4 3 1 1 1 2 32 30 2 2 0 0 9 6 35 32 35 32 0 0 2 2 0 0 2 2 0 0 0 0 6 5 0 0 1 2

18 12 1 11 8 9 9 0 0 8 6 0 0 0 0 8 7 7 8 6 4 0 0 0 0 0 0 0 0 6 8 9 5 0 0

17 1 1 1 1 1 2 1 1 3 6 0 0 9 4 1 1 1 1 1 1 4 5 0 0 1 2 9 4 0 0 1 2

16 10 11 11 13 7 13 5 7 11 17 0 0 14 13 0 0 0 0 3 4 3 3 2 8 1 1 8 8 10 11

15 11 12 11 12 8 13 0 0 9 13 0 0 18 15 5 5 3 4 4 4 0 0 0 0 0 0 11 9

14 9 12 5 6 5 9 2 2 7 11 0 0 0 0 0 0 3 4 3 4 0 0 0 0 2 2

13 0 0 0 0 5 9 2 2 1 2 0 0 0 0 0 0 2 2 0 0 3 3 2 8

12 0 0 0 0 9 6 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0

11 0 0 3 3 3 5 3 4 5 8 0 0 2 2 3 4 3 4 1 1

10 4 4 8 9 4 7 1 1 4 6 0 0 5 4 1 1 1 1

9 4 4 5 5 4 6 31 32 4 5 0 0 13 10 58 59

8 4 4 6 6 2 3 35 36 4 5 0 0 0 0

7 14 17 12 12 7 15 3 4 10 16 0 0

6 0 0 0 0 0 0 0 0 0 0

5 6 4 9 8 17 20 5 4

4 0 0 4 4 2 3

3 15 9 0 0 0

2 8 7

 � MOSS detects some similarity between these two

documents (at least 10% on both comparison files).

 � Both MOSS and DFGGI agree that these pair

documents have some similarity.
 A � percentage similarity between file Y to file X
 B � percentage similarity between file X to file Y

 24

Table 4.4 Comparison each student’s assignment 1 with DFGGI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

19 49 0 45 61 55 15 59 58 54 31 51 23 42 77 54 41 52 31 49 50 48 49 55 17 54 0 46 49 37 0 49 20 46 61 51 48

18 57 0 44 63 57 20 50 52 59 40 59 34 44 81 57 47 54 36 51 57 49 54 61 25 66 0 55 61 47 0 55 29 52 70

17 64 0 51 52 63 9 54 39 60 23 64 22 48 68 57 29 58 23 54 42 55 42 60 7 66 0 57 46 47 0 61 17

16 49 8 44 88 59 48 46 75 56 63 53 54 42 100 49 65 52 61 49 81 51 82 55 46 59 0 44 77 47 0

15 12 100 7 100 13 100 7 100 10 100 9 100 6 100 7 100 9 100 8 100 8 100 10 100 24 100 6 100

14 57 0 45 57 53 10 52 48 59 32 57 25 44 75 56 40 54 30 49 48 55 53 59 18 62 0

13 28 100 9 100 15 100 15 100 18 100 16 100 12 100 16 100 17 100 12 100 14 100 18 100

12 56 24 41 94 54 52 48 86 55 70 51 62 39 100 52 77 55 73 44 85 49 88

11 58 0 51 65 62 21 54 53 66 42 58 29 48 81 60 46 61 39 56 57

10 57 0 47 61 60 18 53 50 58 33 59 28 47 79 59 44 55 32

9 55 6 45 81 58 38 52 72 60 58 55 47 46 100 53 61

8 50 0 45 74 55 28 53 66 59 50 56 41 46 93

7 64 0 57 38 70 0 62 27 73 17 63 2

6 51 9 36 79 48 36 43 70 48 53

5 57 10 47 86 63 45 55 77

4 58 0 47 64 59 19

3 53 23 42 97

2 60 0

 � DFGGI detects some similarity between these two

documents (at least 50% on both comparison files).

 � Both MOSS and DFGGI agree that these pair

documents have some similarity.
 A � percentage similarity between file Y to file X
 B � percentage similarity between file X to file Y

 25

Table 4.5 Comparison each student’s assignment 2 with MOSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

19 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 2 2 5 4 0 0 0 0 0 0 3 2 0 0 0 0 2 2 0 0 0 0

17 0 0 0 0 0 0 0 0 4 4 0

16 0 21 38 3 3 0 0 0 0 0 0

15 3 2 0 0 0 0 0 0 2 1 0 0 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0

13 0

12 1 2 0 0 0 0 3 5 0 0 0 0 0 0 2 2 1 2 0 0 3 5

11 0

10 0 0 0 0 0 0 36 40 6 5 0 0 0 0 0 0 39 43

9 2 2 0 0 0 0 78 77 7 5 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 2 3

7 5 5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 4 2 0 0 0 0

5 0 0 0 0 0 0 5 7

4 2 2 0 0 0 0

3 0 0 0 0 0

2 0 0

 � MOSS detects some similarity between these two

documents (at least 10% on both comparison files).

 � Both MOSS and DFGGI agree that these pair

documents have some similarity.
 A � percentage similarity between file Y to file X
 B � percentage similarity between file X to file Y

 26

Table 4.6 Comparison each student’s assignment 2 with DFGGI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

19 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 0 0 100

18 55 34 64 32 45 0 57 42 61 32 61 11 59 45 56 0 62 27 56 55 60 37 63 33 59 38 52 43 66 25 65 34 71 0

17 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100

16 50 60 57 56 44 0 49 66 53 60 53 33 53 70 59 12 53 50 46 76 55 63 57 58 45 67 45 67 61 53

15 50 69 58 66 40 0 51 77 56 67 56 45 53 79 55 14 57 63 47 86 50 67 55 65 51 70 46 77

14 58 45 65 41 34 0 54 48 60 40 70 28 61 55 57 0 62 36 52 60 64 49 61 40 57 45

13 52 52 54 43 42 0 51 57 55 46 55 25 51 58 54 0 54 40 58 68 54 52 54 45

12 52 61 51 49 42 0 51 66 54 55 55 34 50 66 53 4 53 48 47 75 53 59

11 54 56 56 48 39 0 52 61 54 49 62 35 55 64 58 3 55 44 59 71

10 57 37 59 28 46 0 62 50 62 34 60 11 58 44 61 0 66 32

9 46 60 54 57 40 0 57 77 53 59 52 36 49 70 55 10

8 34 91 37 85 38 0 36 99 36 85 35 64 35 99

7 51 45 60 43 47 0 51 51 54 39 57 21

6 46 76 47 66 34 0 49 79 50 71

5 50 59 51 48 45 0 50 65

4 50 44 57 39 45 0

3 17 100 18 100 18 100

2 50 63

 � DFGGI detects some similarity between these two

documents (at least 50% on both comparison files).

 � Both MOSS and DFGGI agree that these pair

documents have some similarity.
 A � percentage similarity between file Y to file X
 B � percentage similarity between file X to file Y

 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 File1/
File2 A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

19 1 1 0 0 0 0 0 0 0 0 5 17 0 0 3 2 0 0 0 0 1 11 0 0 0 0 3 7 0 0 0 0 0 0 5 5

18 8 7 0 0 0 0 0 0 0 0 18 57 0 0 10 6 0 0 0 0 5 5 0 0 0 0 5 12 0 0 0 0 0 0

17 0 11 11 0 0 0 0 0 0 0 0 0 0

16 0

15 0 0 0 0

14 12 4 0 0 0 0 0 0 0 0 12 17 0 0 12 3 0 0 0 0 11 5 0 0 0 0

13 0

12 0

11 10 8 0 0 0 0 0 0 0 0 5 16 0 0 5 3 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 3 4 0 0 0 0 0 0 0 0 6 32 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

6 26 7 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0

3 0 0 25 18

2 0 0

Table 4.7 Comparison each student’s assignment 3 with MOSS

 � MOSS detects some similarity between these two

documents (at least 10% on both comparison files).

 � Both MOSS and DFGGI agree that these pair

documents have some similarity.
 A � percentage similarity between file Y to file X
 B � percentage similarity between file X to file Y

 28

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FileX/
FileY A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

19 53 69 47 85 45 80 55 47 47 70 64 26 55 24 60 42 49 76 61 22 59 58 52 58 60 0 53 63 54 55 67 13 56 51 59 22

18 44 90 35 100 37 100 48 72 42 95 54 50 48 49 50 64 42 99 52 44 48 79 46 83 59 29 39 81 43 76 57 34 52 80

17 46 70 42 84 41 79 54 50 44 71 53 19 47 21 44 40 42 73 53 17 55 58 45 54 56 0 44 59 43 48 55 6

16 37 100 31 100 33 100 42 89 34 100 56 73 41 66 43 80 35 100 46 62 38 94 43 100 50 42 33 97 38 93

15 47 63 43 80 44 77 50 42 45 67 60 21 54 22 51 32 46 72 55 15 50 50 52 56 57 0 49 58

14 50 56 44 72 46 70 55 37 49 61 61 14 51 13 54 26 47 63 56 8 53 44 52 47 56 0

13 30 100 26 100 25 100 31 85 28 100 28 100 39 66 33 65 34 78 29 100 43 66 36 96

12 51 61 44 77 46 75 56 43 48 66 62 19 55 19 54 31 49 71 59 14 52 48

11 57 71 49 86 48 81 55 46 49 70 59 20 59 28 58 38 53 78 56 15

10 36 90 29 100 32 100 40 72 34 95 49 50 43 51 42 64 34 98

9 65 54 55 67 55 62 62 28 60 56 69 7 63 8 68 23

8 50 83 41 96 42 94 51 61 44 85 52 34 51 39

7 35 80 34 100 33 96 38 60 32 84 41 34

6 41 93 34 100 37 100 46 76 38 97

5 69 58 50 66 54 65 58 28

4 48 71 44 89 43 84

3 57 38 59 63

2 60 37

Table 4.8 Comparison each student’s assignment 3 with DFGGI

 � DFGGI detects some similarity between these two

documents (at least 50% on both comparison files).

 � Both MOSS and DFGGI agree that these pair

documents have some similarity.
 A � percentage similarity between file Y to file X
 B � percentage similarity between file X to file Y

 29

4.3 Discussion

In the artificial test, it is clear that both DFGGI and MOSS did well in detecting

similarities between original and modified documents. The average similarity in both

DFGGI and MOSS were around 97-99%, which is a clear indication of plagiarism.

However, in documents with rearranged structures, results from DFGGI have lower

percentage in detecting similarity compared to those using MOSS. That is because when

the document structures are rearranged, it has a big impact on the way graphs are

generated. To solve this problem, we have to create conceptual graphs in different ways,

and select the best conceptual graph which returns the best result specific for each

domain. Clearly, relative conceptual graphs have the best solution in rearranged

documents. The average percentage was 76%. However, the average percentage of

simple, vertex, and complex conceptual graphs are 54%, 65% and 62.7%, respectively.

Therefore, we chose the relative conceptual graph as the graph format for DFGGI for

handling C language documents. We also conclude that well defined relationships

between vertices make DFGGI perform better.

In real-world experiments DFGGI had a good performance. As mentioned in

section 3, DFGGI uses both text pattern and text relationship between documents for

comparison. Thus, DFGGI‘s results present the combination of structure similarity and

texture similarity between documents. Document structure is the main idea to solve this

problem. DFGGI detects the similarity by comparing text relationship between

documents which is represented as an edge in the conceptual graph. By using text pattern

comparison, DFGGI also detects the texture similarity between documents.

 30

Due to comparing programming solutions of students for the same problem, their

structure could be somewhat similar, while not being due to plagiarism. However, they

should not have texture similarity among them. For this reason, DFGGI might come up

with false positives, since it cannot tell whether the DFGGI’s result is due to structure

similarity, texture similarity or both.

 In the first exercise shown in table 4.3 and 4.4, DFGGI and MOSS algorithm

detected many similar document pairs. Some pairs have the high percentage of similarity

in both MOSS and DFGGI algorithm. In this case, we believe that those pairs are

duplicated from one another. However, there are some pairs that only are defined by

DFGGI or MOSS algorithm as similar pairs. In this case, we have to look at documents

closely to determine whether those pairs are copied. For example, in a pair of document

number 10 and 11 in exercise 1, DFGGI results in 56% in comparison (shown in table

4.4) which is high percentage of similarity. However, this pair has only 1 percent of

similarity on MOSS shown in table 4.3. Focusing on this document pair, we discover that

both documents are not like each other on their source code. However, their structures are

quite similar to each another. As shown in the table 4.9, the number of functions present

in document 10 is approximately equal to the one in document 11. Conclusively, both of

documents have the same structure. The same consideration is also used for checking

comparison results which both MOSS and DFGGI agree in detection. Focusing on a pair

of document number 4 and 9 in exercise 2, and a pair of document number 6 and 18 in

exercise 3 (shown on table 4.5 though 4.8), both pair are reported plagiarism by both

algorithms. The percentages of similarity in document 4 and 9 in exercise 2 are 77, and

57 reported by MOSS, and DFGGI respectively. And 18 and 50 percentages of similarity

 31

are detected on a pair of document 6 and 18 in exercise 3. After we look at their source

code, clearly both pairs are like each other. Thus, MOSS show to good results in these

detection. However, DFGGI algorithm also performs well. In table 4.9, it also presents

that both pairs carry, to an extent, the same structure.

Table 4.9 Counting number of function

In assignment 2 and 3 shown in table 4.5, 4.6, 4.7 and 4.8, most of similar pairs

tested by MOSS algorithm are also similar pairs when checked by the DFGGI algorithm.

MOSS returns only a few document pairs as similar, although all tested documents

should have document structure similarity because they try to solve in the same problem.

Due to MOSS algorithm, it will return the percentage of similarity when texture

similarity was detected between documents. Unlike MOSS, DFGGI can find similarity in

those documents. Not only can DFGGI detect plagiarism, but also the similarity of

document structure. Comparing to MOSS, DFGGI algorithm has better performance in

detecting document structure.

Finally, we would like to mention the registered documents. Registered

documents are documents that are in our database, and are prepared to make the

comparison with our desired documents. After the desired document was converted to

Exercise 1 Exercise 2 Exercise 3 Document number

& Description #10 #11 #4 #9 #6 #18

if 25 28 13 14 40 46

For 28 31 10 9 2 4

While 4 2 6 6 2 3

Declared external
functions

10 8 10 10 1 2

 32

graph grammar format, we can keep its graph grammar as the registered document. The

size of original documents can be reduced this way. In DFGGI, the size of registered

document is reduced from original document around 50% as shown in Table 4.10, and it

seems to be more decreasing in size when the original documents got bigger. This is the

great advantage of DFGGI especially for the documents which are frequently compared.

Original
Document

Registered
Documents

3k 3k
8 k 5 k
11 k 5 k
14k 6k
20k 8k
26k 8k

Table 4.10 Comparison size between original and registered document

 33

5 Conclusions

Digital documents nowadays are easily plagiarized. Thus, it is important to find

ways to detect similarities between documents. Document fingerprinting is a method to

do so. Current algorithms only focus on finding text pattern similarity between

documents, but not text relationship. To show two of any documents are similar to one

another, document fingerprinting must compare both text pattern and text relationship of

both documents. Thus, in this work, we present a new concept using graph grammar

induction for document fingerprinting, especially in the C language. Initially, the

document is converted to conceptual graph. We also define four different conceptual

graphs to handle C-language document. Clearly, the relative conceptual graph is the best

performance’s behavior in this domain. Relative conceptual graph is more consider in

text relationship than other conceptual graphs. Thus, we conclude that if relationships

between textures are more considered, DFGGI will do better results.

After documents are translated into conceptual graph, SubdueGL is called to

extract its graph grammar. Graph grammar can enables the specification of elaborate

graphs using simple production rules. Thus, the results of similarity comparison between

graph grammars can represent the similarity between documents. Finally, the percentage

of similarity between documents is return after our application is operated. As mention in

experience, not only can DFGGI detect plagiarize, but also can it detect the document

structure. We assume that all programming solution in the same exercise should share

document structure in solving problem. However, in the last experience, MOSS almost

can not detect any similarity between student’s assignments, although they are in the

 34

same exercise. Unlike MOSS, DFGGI is better detecting document similarity in that

exercise.

In this paper, we also study in graph characteristics, graph grammar and the graph

isomorphism. This research filed provides many attractive topics in both theory and

application, and is expected to be one of the key fields in document fingerprinting

research.

In the future, apart from investigating more conceptual graph relevance detection

algorithms to comply with all conditions necessary and to establish a powerful algorithm,

several other issues are on our agenda. Also, using DFGGI in different domains, such as

human language understanding, may be successful.

 35

REFERENCES

[1] Jonyer, I., L.B. Holder, and D.J. Cook, “MDL-Based Context-Free Graph
Grammar Induction,” Proceedings of the Sixteenth Annual Florida AI
Research Society, 2003.

[2] University of Texas at Arlington, “The Subdue: Knowledge Discovery
System.” via <http://ailab.uta.edu/subdue/ > (3 April 2004).

[3] Schleimer, Saul, Daniel Shawcross Wilkerson, and Alexander Aiken,
“Winnowing: Local Algorithms for Document Fingerprinting,” SIGMOD
2002, 76-85.

[4] Jonyer, I., L. B. Holder and D. J. Cook, “MDL-Based Context-Free Graph
Grammar Induction and Applications,” International Journal of Artificial
Intelligence Tools, March 2004.

[5] Jonyer, I., L. B. Holder, and D. J. Cook, “Concept Formation Using Graph
Grammars,” Proceedings of the KDD Workshop on Multi-Relational Data
Mining, 2002.

[6] Aiken, Alex. “A System for Detecting Software Plagiarism.”
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf (5 April
2004).

[7] Sabin, Todd. "Comparing binaries with graph isomorphisms. "2004. via
<http://razor.bindview.com/publish/papers/comparing-binaries.html> (10

April 2004).

[8] Montes-y-Gómez, Manuel, Aurelio López-López, and Alexander Gelbukh.
“Information Retrieval with Conceptual Graph Matching,” Lecture Notes in
Computer Science N 1873, Springer-Verlag, 2000.

[9] Narayanan Shivakumar, Hector Garcia-Molina. “SCAM: A Copy Detection
Mechanism for Digital Documents.” in d-lib magazine. Stanford University,
Department of Computer Science.

[10] Richard M. Karp, and Michael O. Rabin, “Pattern-matching algorithms,” IBM
Journal of Research and Development, 31(2):249-260, 1987.

VITA

Prach Apiratikul

Candidate for the Degree of

Master of Science

Thesis DOCUMENT FINGERPRINTING USING GRAPH GRAMMAR INDUCTION

Major Field: Computer

Biographical

 Personal Data: Born in Bangkok, Thailand, On April 11, 1980, the son of Pew and

Sugunya Apiratikul

 Education: Graduated from Debsirin High School, Bangkok, Thailand in May

1996; received Bachelor of Science degree in Computer Science degree in

Thammasat University, Bangkok, Thailand in May 2000. Completed the

requirements for the Master of Science degree with a major in Computer

at Oklahoma State University in July, 2004.

	Table of Contents
	List of Tables
	List of Figures
	Chapter I
	Chapter II
	Chapter III
	Chapter IV
	Chapter V
	References
	Vita

