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Abstract 

 Due to sensor and algorithmic constraints, satellite aerosol optical depth (AOD) retrievals 

are spatially incomplete over clouds, deserts, and other bright surfaces. These gaps in satellite 

AOD datasets represent a significant challenge in characterizing aerosol distributions at a daily 

temporal resolution. These challenges are essential to overcome due to aerosol impacts on human 

health, the economy, weather, and climate. The task of filling these gaps in AOD datasets is 

known as AOD gap-filling. In this study, we propose using a deep learning (DL) architecture 

called UNet 3+ to perform this task. The model is trained on Deep Blue (DB) AOD retrievals 

from Terra, Aqua, and S-NPP, MERRA-2 reanalysis AOD, meteorological and land-use 

variables from NAM, and HMS smoke polygons. Through spatial evaluations against 

AERONET and DB AOD, we show that such an approach is feasible over CONUS, even in the 

semi-arid western U.S. where historically, topography, bright surfaces, and snowpacks have 

made AOD gap-filling a challenging problem. We created spatiotemporal datasets of daily gap-

filled DB AOD from 2012-2022 over CONUS at a 12 x 12 km2 resolution with statistical 

evaluations of RMSE~0.08 and r~0.84 against collocated AERONET retrievals. This dataset will 

be a starting point for future aerosol-related studies, such as acute daily PM2.5 (particulate matter 

with an aerodynamic diameter smaller than 2.5 µm) exposure studies. Some potential challenges 

exist with the suggested approaches and, more generally, in estimating AOD and PM2.5. The first 

is the sampling bias that naturally arises from AOD retrievals, whether from ground- or satellite-

based sensors. As no retrievals are performed in cloudy pixels, any model trained on this data is 

only aware of the dynamics of clear-sky AOD, and we cannot directly validate estimations over 

cloudy-sky areas (not even with ground truth AERONET). However, because this research aims 
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to use AOD to estimate PM2.5  and hydrological effects tend to lower aerosol concentrations 

(e.g., washout from precipitation), the methods can be justified as providing an upper-bound 

(acute) estimate for exposure.
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1. Background and Introduction 

1.1 Aerosol Definition 

Atmospheric aerosols are small airborne solid and liquid particles that range in size from 

nanometers to micrometers (Pöschl, 2005). These aerosols come in diverse forms (everything 

from dust, sea salt, ash, smoke, pollen, etc.) and are emitted from various sources, both natural 

and anthropogenic (Andreae & Rosenfeld, 2008; Jacobson et al., 2000). Man-made contributions 

to global aerosol emissions have steadily increased since the Industrial Revolution (Bond et al., 

2007), a factor that plays a prominent role in today’s changing climate (Charlson et al., 1992; 

Lee et al., 2023; Leibensperger et al., 2012; Wilcox et al., 2013). Aerosols may be small but have 

a significant impact on the Earth. For instance, they can cause health complications when inhaled  

and alter the weather and climate through their light absorption/scattering properties and cloud 

interactions. 

Unfortunately, the mechanisms behind the effects of aerosols on the climate are 

complicated and not yet well-characterized . The largest uncertainty for radiative forcings in 

climate models lies with aerosols (Lee et al., 2023). These uncertainties can be attributed to the 

difficulty in characterizing aerosol chemical and physical properties, evolution, cloud 

interactions, and transport (Altaratz et al., 2014; Barbaro et al., 2013; Rosenfeld et al., 2014; 

Wang et al., 2013; Zhang et al., 2015). 

A growing body of research has demonstrated a link between aerosol inhalation and 

health problems (Anderson et al., 2020; I. M. Kennedy, 2007; Mauderly & Chow, 2008; Pöschl, 

2005; Schraufnagel, 2020; Shiraiwa et al., 2017). This is because some aerosols are small enough 

to pass through the nasal passages and into the lungs, as shown in Figure 1, which can potentially 
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lead to cardiovascular complications (Kim et al., 2015).

 

Figure 1: The size of aerosols, or particulate matter (PM), that can penetrate the human body (Kim et al., 2015). 

One example of a source of aerosols with high societal impact is wildfires. In North 

America have been occurring more frequently and are common in the western U.S. during the 

wildfire season (summer and fall for the northern hemisphere) (Gonzalez-Alonso et al., 2019; 

Neale & May, 2018; Peterson et al., 2014). An example of a wildfire with the resulting smoke 

plumes on September 5, 2017, is shown in Figure 2, with the locations of the fire sources 

indicated using orange dots. These wildfires have devastating effects on the people residing in or 

around the burn area, destroying homes, businesses, and lives (Kramer et al., 2019). The smoke 

generated from these fires can be transported upstream and downwind over long distances (i.e., 

across the entire country), causing damaging health, environmental, and economic damage 
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(Alman et al., 2016; Lim et al., 2012; Shuman et al., 2022; Wu et al., 2018). Properties of smoke 

from wildfires vary depending on vegetation type, ecological and geographical conditions, and 

burn conditions (Chakrabarty et al., 2010; Chen et al., 2007; Chow et al., 2004). 

 

Figure 2: VIIRS visible imagery over the Pacific Northwest on September 5, 2017, showing heavy wildfire smoke. Source: NASA 

Worldview. 

Another condition under which aerosols can have damaging effects is during stable 

conditions that inhibit pollutant mixing, known as temperature inversions. Temperature 

inversions are a meteorological phenomenon in which a layer of warm air overlies a layer of 

colder air in the troposphere, contrasting with the typical temperature gradient, which falls with 

height in the troposphere (Iacobellis et al., 2009). Temperature inversions can present health 
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risks to those living in the area, particularly in urban cities during the winter. Under these 

conditions, urban emissions from cars, heating, businesses, etc. (i.e., smog) are trapped near the 

ground and pose a severe health risk for its inhabitants (Trinh et al., 2019; Wallace et al., 2010). 

 

1.2 Aerosol Health Effects 

For aerosol-related health studies, aerosols are referred to as particulate matter (PM) and 

categorized by their aerodynamic diameter. PM10 is defined as PM with an aerodynamic 

diameter of less than 10 microns, PM2.5 is defined as PM with an aerodynamic diameter of less 

than 2.5 microns, and PM0.1 is defined as PM with an aerodynamic diameter of less than 0.1 

microns. These delineations were chosen with respect to the ability of various human body parts 

to filter out particles of these sizes (Figure 1). 

There are many different types of PM that can affect human health. For example, wildfire 

smoke exposure has been shown to have strong associations with general respiratory health 

problems, overall increased morbidity and increasing evidence of cardiovascular risk. The most 

common effects include exacerbations of asthma and chronic obstructive pulmonary disease 

(Reid et al., 2016). Long-term effects also include an increased risk of cancer (Grant & Runkle, 

2022). For example, in Indonesia, long-term exposure to PM2.5 is estimated to have caused 648 

premature deaths per year from 2011 to 2015 (26 deaths per 100,000 people per year) (Uda et al., 

2019). In Canada, all-cause mortality due to wildfire PM2.5 exposure is estimated to have 

increased from 570 deaths in 2013 to 2,500 deaths in 2017 before decreasing to 1,400 in 2018 

(Matz et al., 2020). Kim et al., (2017) found an average decrease in lung capacity of 20.4 L min-1 

following a large wildfire in Indonesia in 1997 (Kim et al., 2017). A growing body of research 
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also shows a link between high PM levels and cardiovascular disease, especially from smoke 

exposure (Brook et al., 2010; Martinelli et al., 2013). 

Dust aerosols are another source of concern when it comes to human health risks. In the 

U.S., dust storms occur frequently in the Great Plains and the Great Basin, where dry climate and 

high winds form the perfect conditions (Gillette & Hanson, 1989). Specific regions that also 

experience intense dust effects include the Coachella Valley and Owens Valley in California 

(Bach et al., 1996); Phoenix, Arizona (Péwé & Science, 1981); and Lubbock, Texas, which has 

experienced spikes in pneumonia following dust events, a phenomenon dubbed the “Haboob 

Lung Syndrome” (Panikkath et al., 2013). Many studies have found respiratory clinic visits 

increased following dust events (Cheng et al., 2008; Chien et al., 2012; Kang et al., 2012; Lee et 

al., 2013). 

 

1.3 Aerosol Weather and Climate Effects 

Aerosols have complex effects on the Earth's radiative balance. These effects are 

separated into direct and indirect effects. The direct effect is the change in Earth’s radiative 

budget due to the direct scattering and absorption of incoming shortwave radiation by 

atmospheric aerosols (Atwater, 1970; Boucher et al., 2013; Charlson & Pilat, 1969; Coakley et 

al., 1983; McCormick & Ludwig, 1967). The indirect effect is the change in cloud albedo and 

lifetime that causes affected clouds to reflect more shortwave radiation than they otherwise 

would (Lohmann & Feichter, 2005; Prather et al., 2008; Ramanathan et al., 2001). Increased 

aerosols in the atmosphere can lead to an increase in cloud condensation nuclei (CCN), which, 

assuming the same amount of water vapor in both scenarios, leads to smaller cloud droplets with 
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higher albedo (reflectivity), known as the Twomey effect (Twomey, 1974). Higher albedo causes 

clouds to reflect more shortwave radiation, and the decrease in cloud droplet effective radius also 

leads to a decreased chance of rain and an increased cloud lifetime, known as the Albrecht effect 

(Albrecht, 1989). A brighter, more persistent cloud will again lead to more shortwave radiation 

reflected and a cooler Earth.  

Aerosols also affect extreme weather like tropical cyclones (TC). Rosenfeld et al., (2012) 

noted how CCN absorbed by a TC can significantly weaken its intensity. This mechanism is 

accomplished through “redistributing the precipitation and latent heating to more vigorous 

convection in the storm periphery that cools the low levels and interferes with the inflow of 

energy to the eyewall, making the eye larger and the maximum winds weaker”. This effect was 

observed through both simulations and observations (Khain et al., 2008; Koren et al., 2005, 

2010; Wang, 2005). 

The impact of aerosols on vertical heating profiles is not just limited to extreme weather 

events. For instance, aerosols have been shown to impact the height of the planetary boundary 

layer (PBL) (Zhang et al., 2012). Quan et al., (2012) used various remote sensing instruments to 

measure the vertical profile of aerosols and the PBL height. They found that aerosol 

concentration and PBL height were anticorrelated during clear and haze conditions. The results 

from this study showed that the average maximum PBL heights were approximately 1.08 and 1.7 

km while the averaged aerosol concentrations were 52 and 17 μgm-3 under haze and clear sky 

conditions, respectively. A positive feedback loop in which haze conditions (i.e., high aerosol 

concentrations), significantly reduced heat flux and repressed the PBL, which in turn usually led 

to higher aerosol concentrations. This phenomenon would lead to high concentrations of surface 
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air pollution, particularly in megacities where urban emissions are high on a daily basis due to 

traffic and factories. 

1.4 Sensing Aerosols 

 There are numerous techniques to monitor the aerosols in our atmosphere. However, this 

research focused on two types of measurements: ground-based-instrument networks and satellite 

remote sensings. We gathered retrievals of aerosol optical depth (AOD) from these two sources. 

1.4.1 Aerosol Optical Depth (AOD) 

AOD is directly related to the transmittance 𝑡 at wavelength λ through a column of the 

atmosphere between points 𝑠1 and 𝑠2, where transmittance is simply the ratio of outgoing Iλ(s2) 

and incident Iλ(s1) radiant intensity (Petty, 2006) 

𝑡𝜆(𝑠1, 𝑠2) =
𝐼𝜆(𝑠2)

𝐼𝜆(𝑠1)
= 𝑒−𝜏𝜆(𝑠1,𝑠2).                                (Eq. 1) 

AOD quantifies the amount of light at a particular wavelength that is attenuated by aerosols after 

passing through a column of air and therefore acts as a proxy measurement of the quantity of 

aerosols within that column. 

1.4.2 Retrieving AOD Using Ground-Based Instruments 

 One method of retrieving AOD from the ground is through the use of sunphotometers, 

devices that can measure irradiance at different wavelengths while pointing at the sun. While the 

solar irradiance at the top of the atmosphere 𝐼λ(𝑠1) cannot be directly measured by these 

instruments because they are ground-based, it can be inferred using a technique called Langley 
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extrapolation. Langley extrapolation assumes a plane-parallel atmosphere with minimal temporal 

and spatial disturbances between two or more sequential observations (e.g. throughout the 

morning). These measurements at different solar zenith angles allow the user to extrapolate the 

solar irradiance at the top of the atmosphere. Once this value is obtained, AOD can be calculated 

using Eq. 1 (Shaw, 1983). These AOD retrievals are point-based, only measuring the column of 

atmosphere above the instrument. 

 The wavelengths at which these retrievals are made are chosen to avoid the molecular 

atmospheric absorption bands. Doing so ensures the optical depth retrieved results from aerosol-

induced extinction and not atmospheric gases (e.g., O2, O3, N2, and CO2) and water vapor 

(Angstrom, 1929; Shaw, 1983). 

1.4.3 Retrieving AOD Using Satellites 

 Another method of retrieving AOD is through radiometers mounted on satellites. 

Radiometers are similar to photometers, but instead measure radiant flux. These measurements 

also enable a retrieval of AOD but through a more complicated retrieval algorithm due to the 

added complexity from light reflecting off the Earth and its atmosphere. This method allows for 

area-averaged retrievals of AOD and has become the primary source for monitoring loadings of 

aerosols at the global scale (Wei et al., 2020). Satellite-retrieved AOD datasets are 

complementary to sunphotometer AOD datasets, as the former can cover areas that are 

inaccessible for sunphotometer stations and the latter can be used to calibrate the retrieval 

algorithms of the former (Wei et al., 2020). 

Examples of such radiometers include the Moderate Resolution Imaging 

Spectroradiometer (MODIS) onboard Terra and Aqua satellites and the Visible Infrared Imaging 
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Radiometer Suite (VIIRS) onboard Suomi-NPP satellite. The three major retrieval algorithms 

used for retrieving AOD are Dark Target (DT) (Chu et al., 2002; Kaufman et al., 1997; Remer et 

al., 2002, 2005; Tanré et al., 1997a, 1999), Deep Blue (DB) (Hsu et al., 2004, 2013; Jeong et al., 

2011; Sayer et al., 2013; Sayer, Hsu, Bettenhausen, Ahmad, et al., 2012; Sayer, Hsu, 

Bettenhausen, Jeong, et al., 2012), and Multi-Angle Implementation of Atmospheric Correction 

(MAIAC) (Lyapustin et al., 2012, 2018; Lyapustin, Martonchik, et al., 2011; Lyapustin, Wang, 

et al., 2011; Lyapustin & Wang, 2008). 

DT is the original aerosol retrieval algorithm developed for the MODIS sensors and was 

implemented on board Terra and Aqua (Kaufman et al., 1997). The algorithm works by 

organizing radiance data into 10km boxes, removing distortion effects (e.g., gas absorption, 

angular effects) from the satellite signal, establishing a land/ocean mask, separating the aerosol 

signal from noise (clouds, surface inhomogeneities, etc.), inferring the AOD from the cloud-free 

signal. As the name suggests, the DT algorithm is intended for use over dark surfaces, mainly 

vegetated land areas and the ocean. This is an issue for areas like the western U.S., which has 

many more bright surface regions such as deserts, snowpack, and salt pans compared to the 

eastern U.S. (Loría-Salazar et al., 2016) .The DT algorithm was not selected as the primary AOD 

training input of the gap-filled AOD model because the challenges presented accurately retrieve 

AOD on bright surfaces. 

Hsu et al., (2004) introduced the DB algorithm (Hsu, 2017; Hsu et al., 2004, 2019; Hsu, 

2016). This algorithm retrieved AOD over bright surfaces by leveraging blue spectral 

wavelengths (<500 nm) which render these surfaces much darker than in the red and infrared 

part of the spectrum, but much darker in the blue spectral region (<500 nm) (Figure 3). The DB 

algorithm also includes a high-resolution surface reflectance lookup table and can retrieve AOD 
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over bright surfaces with higher accuracy than the DT algorithm (Hsu et al., 2004). This is useful 

in providing a more spatially complete distribution of AOD and informing of different forms of 

aerosols and their emission sources. Namely, for desert areas, this means dust aerosols. 

 

Figure 3: An image over northern Africa showing the presence of dust aerosols and the effectiveness of the Deep Blue 

wavelength at isolating these aerosols. Source: MODIS Terra. 

MAIAC is another AOD retrieval algorithm developed by Alexei Lyapustin and Yujie 

Wang in 2008 (Lyapustin & Wang, 2008) that takes an entirely different approach for cloud 

masking, aerosol retrievals, and atmospheric correction, considering previous retrievals and 

treating these parameters as time series. It also has an extremely high resolution of 1 km, 

compared to the 3, 6, and 10 km resolution of DT and DB. Unfortunately, MAIAC Collection 6, 

which was the latest collection at the time of the gap-filled model input selection, was not chosen 

as MAIAC AOD underestimated high AOD loadings such as smoke in comparison to ground-

truth AERONET AOD (Loría-Salazar et al., 2021).  

 

1.5 Estimating PM2.5 Using AOD 

Satellite retrievals of AOD have commonly been used as a spatial predictor of daily 

surface-level PM2.5. These attempts have included statistical, chemical transport, and machine 
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learning models (Chang et al., 2014; Chen et al., 2021; Holmes et al., 2014; Hu et al., 2014, 

2014; Hu et al., 2014). These studies have shown promising results. For instance, Hu et al., 

(2014) showed that it is possible to estimate surface PM2.5 at 1 km resolution in the southeastern 

United States using MAIAC AOD as the primary estimator and a two-stage model that combines 

a linear effects model with a geographically weighted regression. They achieved an R2~0.67, a 

mean prediction error MPE~2.54 μgm-3, and a root mean squared prediction error RMSE~3.88 

μgm-3 in cross-validation. However, Hu et al., (2014) noted, “a limitation of the developed 

approach is the lack of a method to fill the gaps in areas where AOD is not retrieved”. 

Chang et al., (2014) introduced a statistical downsampling method that he used to 

evaluate MODIS DT AOD as a predictor for daily surface PM2.5. Chang’s study was conducted 

over a region in the southeastern United States from 2003-2005. Approximately 43% of the data 

from AOD grid cells collocated with PM2.5 monitoring stations was missing in this study. 

Various permutations of datasets were tested as inputs, namely MODIS AOD, land use variables 

like elevation and proximity to roads, and daily meteorological variables. Using 10-fold cross-

validation, Chang et al., (2014) found that the model trained on all inputs and the model trained 

on just meteorological variables and AOD performed the best, both achieving an RMSE~3.71 

μgm-3 and an R2~0.71. The lowest performing model was trained on just meteorological and land 

use variables, with an RMSE~ 4.03 μgm-3 and an R2~0.72. Chang et al., (2014) concluded that 

satellite AOD can be considered a covariate for predicting daily surface PM2.5 concentrations, 

but also notes that a significant caveat lies in dealing with missing AOD data, where PM2.5 

predictions cannot be obtained. 

Chen et al., (2021) compared the performance of AOD-based and non-AOD-based daily 

surface PM2.5 random forest models. The region of interest in this study was Guangdong, China, 
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where satellite AOD data was extremely sparse (around 80% missing) over the study period of 

2016-2018. The results showed that the random forest trained with AOD as a predictor barely 

outperformed the random forest trained without it. In cross-validation for the three years, the 

AOD model scored R2 values of ~0.83, ~0.82, and ~0.80, while the non-AOD model scored 

~0.82, ~0.81, and ~0.78. Similarly, for RMSE, the AOD model scored 8.2 μgm-3, 9.2 μgm-3, and 

9.0 μgm-3, and the non-AOD model scored 8.4 μgm-3, 9.5 μgm-3, 9.4 μgm-3. This suggests that in 

developing models that estimate daily surface-level PM2.5, sparsity can render current remote-

sensed AOD data useless as a predictor. 

1.6 AOD Gap-Filling Problem 

The previous section suggests that AOD could be valuable as a predictor for surface 

PM2.5. However, the issue of data sparsity must first be overcome. This sparsity exists because 

AOD cannot be retrieved from satellite sensors when the underlying image is too reflective 

(Loría-Salazar et al., 2016; Loría-Salazar et al., 2021; Lyapustin et al., 2018; Peterson et al., 

2014, 2017) or when the aerosols are concentrated too close to the surface (Silcox et al., 2012). 

These reflective surfaces include clouds, snow cover, salt pans, and deserts. One approach to 

dealing with these gaps is filling them in before using satellite AOD datasets in downstream 

tasks. This approach, commonly referred to as AOD gap-filling, will be this thesis’s 

primary focus.  

AOD gap-filling has been the focus of many efforts which have yielded varying degrees 

of success. Zhang et al., (2022) summarized these as data fusion-based (linear regression, 

Bayesian, Bayesian maximum entropy, spatial statistical data fusion, maximum likelihood 

estimate, quantile regression (QR), QR neural network, QR forest, and tensor completion), 
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collaborative variable-based (random forest, multiple imputation, and normalized difference 

vegetation index-based weighted linear regression), interpolation-based (inverse distance 

weighting and Kriging variations), and hybrid (linear regression and ordinary Kriging, spatial-

temporal hybrid fusion considering aerosol variation mitigation, and two-step model) (Zhang et 

al., 2022). An important point to note is that most of these models have been developed for 

China, leaving the U.S. with no specialized solutions. 

The Bayesian method used by Singh et al., (2017) focused on combining multiple AOD 

datasets collected from various instruments along with error distributions from AERONET in 

order to form a more complete and accurate daily “merged” AOD dataset in India (Singh et al., 

2017). This method results in high correlation r~0.89-0.93 and RMSE~0.08-0.13 with 

AERONET compared to the original input datasets. Unfortunately, gaps still exist in the merged 

dataset where no retrievals in the input datasets exist. Tang et al., (2016) introduced a Bayesian 

maximum entropy approach to create a more spatially complete daily AOD dataset over China. 

This method also merges various satellite AOD products and is able to produce a dataset that is 

95.2% complete compared to MODIS (22.9%) and Sea-viewing Wide Field-of-view Sensor 

(20.2%). A correlation of r~0.75 and RMSE~0.29 was achieved against AERONET. Jiang et al., 

(2021) developed a random forest model to produce hourly gap-filled AOD datasets for China 

using MAIAC and AHI (Advanced Himawari Imager, a satellite-mounted multispectral imager 

also capable of retrieving AOD) AOD as well as meteorological and geographical variables. 

They achieved a correlation of r~0.60 and RMSE~0.20. Bai et al. (2022) created a long-term 

(2000-2020) high-resolution (1 km) gap-free AOD dataset over China using tensor completion. 

They used a diverse dataset composed of AOD from multiple instruments/models, meteorology, 

air quality measurements, and land-use variables into a tensor-flow-based data fusion method. 
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Their method results in a correlation of r~0.91 and RMSE~0.21. Wei et al., (2023) developed a 

4-Dimensional Space-Time Extra-Trees (4D-STET) model which they used to generate global 

daily gap-filled AOD datasets using Terra and Aqua MAIAC AOD retrievals along with 

modeled AOD, meteorological variables, and land-use variables. Their method achieved a 

correlation of r~0.73 with AERONET. 

The core research question of the work presented in this thesis is whether we can 

develop an AOD gap-filling model specialized for the continental U.S. (CONUS) using Deep 

Learning (DL) techniques. DL is a subfield within machine learning (ML), which studies 

computer systems that can automatically improve through experience (Jordan & Mitchell, 2015). 

Methods within DL are characterized by the use of extremely large, or “deep”, artificial neural 

networks (ANN), hence the name (LeCun et al., 2015). ANN’s are computer models loosely 

inspired by the network of neurons within the brain (Zou et al., 2009). These neurons can receive 

signals from other neurons via chemicals called neurotransmitters and will send 

neurotransmitters upon receiving the right neurotransmitters. As demonstrated by the intelligence 

of complex life-forms, a sufficiently large collection of neurons is capable of many non-trivial 

tasks. In much the same way, neurons in an ANN send and receive signals to each other 

depending on the signal they receive. The neurons in an ANN are assembled in a stack of layers, 

where signals flow sequentially through the layers. These networks are usually trained on 

samples drawn from the data distribution of interest using some variant of gradient descent, 

similar to how one would train a regression model. 

DL has seen an increase in use in recent years, both in research and commercially. It has 

been applied to a wide range of tasks, from materials science (Choudhary et al., 2022) to drug 

discovery (Ma et al., 2015) to natural language processing (Collobert et al., 2011). Perhaps most 
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relevant to this thesis, however, is that researchers have found success in developing DL models 

for computer vision, the study of machine learning for image-based tasks (Chai et al., 2021). 

This is promising because any spatial datasets can be viewed as images that can then be fed into 

such models. 

In this thesis, I aim to demonstrate how a DL computer vision model, the UNet 3+, can 

outperform the more traditional methods mentioned above. The UNet 3+ was initially developed 

for medical image processing (Huang et al., 2020). It was chosen for this project for a few 

reasons. One is because its outputs have the same spatial dimensionality as its inputs. This 

configuration makes for easy operational use as one pass through the input data will produce a 

spatially complete AOD dataset. Another reason is that it has been empirically shown to 

converge given a relatively small sample size compared to other state-of-the-art models in 

computer vision like the vision transformer (Dosovitskiy et al., 2021). This is an important 

consideration considering the relatively small satellite AOD dataset (one image a day for eleven 

years). A back-of-the-envelope calculation shows that if a satellite has only been operational for 

around ten years, then only around 3,650 days of data will be available, a paltry amount 

compared to the 300 million sample dataset used to train the vision transformer to its best-in-

class status. The goal of this thesis is to test the viability of UNet 3+ as an architecture for 

AOD gap-filling. Our hypothesis is that the UNet 3+ architecture, combined with DB AOD 

and supplemental datasets, will improve spatiotemporal coverage of AOD missing data due 

to cloud cover or bright surfaces (e.g., semi-arid or arid deserts). The primary outcome of 

this research is the creation of a spatiotemporal dataset of gap-filled AOD with an eye 

towards of using the end product (gap-filled AOD) as a spatial predictor of PM2.5 in future 

poor air quality exposure studies.  
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2. Instrumentation and Datasets 

Table 1 summarizes the instruments, models, variables, and spatial-temporal resolution of 

the datasets used in this investigation. This section will explain the instrumentation, 

models, and datasets used to train the UNet 3+ gap-filler AOD. 

Model/Instrument  Variables Spatial 

Resolution 

Temporal 

Resolution 

NAM 12km Psurf, Pmsl, Tsurf, T2m, 

DWT2m, orography, RH-

2m, U10m, V10m, land 

mask, vegetation, PBLH 

12x12 km2 6 hours 

Terra/Aqua 

MODIS 

DB AOD550nm 10x10 km2 daily 

 FRP 1x1 km2 daily 

S-NPP VIIRS DB AOD550nm, aerosol 

type, algorithm flag 

6x6 km2 daily 

MERRA-2 AOD550nm 50x62.5 km2 hourly 

HMS smoke density ~1x1 km2 daily 

AERONET AOD675nm, AEE440-675nm point location <1 hour 

Table 1: List of all data sources used in the training and evaluation of the UNet 3+ gap-filler. 
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2.1 Instrumentation 

2.1.1 Cimel CE-318 

 The Cimel CE-318 is a photometer that can take both daytime and nighttime iradiance 

measurements. These devices can measure direct (Direct-Sun scan) and sky (Almucantar and 

Principal Plane scans) irradiance using the sun as the light source under non-cloudy conditions 

(Dubovik et al., 2000; Dubovik et al., 2006; Holben et al., 1998). NASA operates a global 

network of Cimel-CE 318 sunphotometers called the AErosol RObotic NETwork (AERONET). 

2.1.2 Terra/Aqua Moderate Resolution Imaging Spectroradiometer 

(MODIS) 

Terra and Aqua are two NASA polar-orbiting satellites equipped with the twin 

instruments Moderate Resolution Imaging Spectroradiometer (MODIS), sensors used for earth 

and climate measurements. Terra was launched in 1999, and Aqua was launched shortly after in 

2002. MODIS was designed to resolve the spatial and temporal distribution of aerosols, clouds, 

and other weather features (e.g., albedo) globally. It has 36 spectral channels ranging from 0.41 

μm to 15 μm at spatial resolutions ranging from 250 m to 1 km at nadir, allowing for aerosol and 

cloud characterization (Ackerman et al., 1998; Gao et al., 2002; Martins et al., 2002). MODIS’s 

spectral range enabled it to make AOD retrievals (Tanré et al., 1996, 1997b). 

Polar-orbiting satellites capture images of each part of the Earth at the same local time 

daily (Figure 4). Since their orbit is relatively closer to the Earth than geostationary satellites, 
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polar-orbiting satellites can acquire daily high-resolution images. Terra has a morning overpass 

time of 10:30 a.m., and Aqua has an afternoon overpass time of 1:30 p.m. 

 

Figure 4: Depiction of the orbit of a polar-orbiting satellite. Source: Space Foundation. 

 

2.1.3 Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) 

 The Suomi National Polar-orbiting Partnership (S-NPP) is a weather satellite launched in 

partnership between NASA and NOAA in 2011. S-NPP carries an instrument suite called the 

Visible Infrared Imaging Radiometer Suite (VIIRS), which combines features of MODIS with 

those of the Advanced Very High-Resolution Radiometer (AVHRR) (the previous generation of 

radiometer equipped with NOAA polar-orbiting satellites) and the Operation Linescan System 

(an instrument used by the Defense Meteorological Satellite Program (DMSP) to monitor the 

global distribution of clouds and cloud top temperatures) (“DMSP Operational Linescan System 
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(OLS),” 2022; Liang, 2018) . VIIRS has 22 spectral channels, ranging from 0.412 µm to 11.45 

µm, at 375 m and 750 m spatial resolution at nadir (Liang, 2018). VIIRS also has a swath width 

of 3,000 km, which is 700 km greater than that of MODIS and eliminates gaps in coverage by S-

NPP (Hillger et al., 2014). S-NPP also has the same 1:30 p.m. overpass time as the A-train 

(constellation of satellites that overpass 1:30 p.m. such as Aqua satellite) (Stephens et al., 2002). 

2.2 Datasets 

2.2.1 Weather Variables from North American Model (NAM) 12 km 

 We incorporated weather data from the North American Mesoscale Forecast System 

(NAM) 12 km (Janjic et al., 2005) to provide the gap-filled model the building blocks for 

deciphering the nature of aerosol transport and evolution. The NAM datasets were selected 

because 1) a weather model would offer spatially complete data on a regularly spaced grid, 

unlike data collected from balloon soundings or weather stations, and 2) a mesoscale model 

would be gridded at roughly the resolution as that of satellite products. 

 The NAM 12 km model is a regional weather forecast model developed by the National 

Oceanic and Atmospheric Administration (NOAA) and run by the National Centers for 

Environmental Prediction (NCEP) (Information (NCEI), n.d.). It offers weather parameters, 

including pressure, temperature, humidity, planetary boundary layer height (PBLH), and land-

use parameters such as orography and vegetation. NAM uses a Lambert Conformal grid spaced 

at 12x12 km2 that covers CONUS (Figure 5), is run four times daily at 00:00, 06:00, 12:00, and 

18:00 UTC, and has been operational since March 2004 (Information (NCEI), n.d.). 
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Figure 5: A map of the NAM domain (solid) as well as the parent domain (dashed). We used data gridded in the solid region. 

Source: (“North American Mesoscale Forecast System,” 2020). 

 We selected surface pressure (P0), pressure at mean sea level (MSLP), surface 

temperature (T0), 2-meter temperature (2-T), 2-meter dewpoint temperature (2-DewT), 2-meter 

relative humidity (2-RH), 10-meter wind speeds (10-WS), PBLH, orography, and vegetation. We 

aligned the time of the NAM variables with satellite overpasses and averaged  consecutive 18:00 

and 00:00 UTC datasets, which range from 1:00 p.m. PST to 4:00 p.m. EST.  

2.2.3 Hazard Mapping System (HMS) 
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 We also included NOAA’s Hazard Mapping System (HMS) smoke polygons product 

further to facilitate the model's decision-making for smoke recognition. HMS is a framework that 

takes near-real-time polar (S-NPP, NOAA-20, Terra) and geostationary (GOES-16 and GOES-

17) satellite observations, passes them through automated fire and smoke plume detection and is 

finalized by quality-controlled by expert image analysts (Brey et al., 2018; McNamara et al., 

2004). HMS runs 24x7x365 and produces daily spatial datasets of smoke plumes over CONUS. 

These plumes are given as shape files and are categorized as light, medium, and heavy 

depending on the apparent opacity of the smoke in the satellite imagery.  

 

Figure 6: A sample map of the HMS smoke product for November 8, 2018, showing a large smoke plume from the Camp Fire. 

Green, yellow, and red denote light, medium, and heavy smoke densities, respectively. Source: NOAA HMS. 

2.2.2 Modern-Era Retrospective Analysis for Research and 

Applications, version 2  (MERRA-2) 
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 The Modern-Era Retrospective Analysis for Research and Applications, version 2 

(MERRA-2), is a global reanalysis product developed by NASA’s Global Modeling and 

Assimilation Office (GMAO). It offers many improvements over the previous version, which 

most notably for this project, includes aerosol data assimilation and analysis (Gelaro et al., 2017; 

Randles et al., 2017). It has been noted that such data assimilation has prospects for air quality 

studies(Bocquet et al., 2015). Most of MERRA-2’s aerosol assimilation data comes from 

MODIS Terra and Aqua, with additional inputs from AERONET. 

 From the MERRA-2 dataset, an hourly time-averaged single-level assimilation aerosol 

diagnostics dataset, we used the reanalysis AOD at 550 nm product that is spatially complete and 

offered at the native resolution of 0.5° x 0.625°.  

2.2.4 AErosol Robotic NETwork (AERONET) 

 AERONET, is a global federation of ground-based remote sensing aerosol networks. 

Each site contains a Cimel CE-318 Photometer which retrieves AOD hourly. These AOD 

retrievals are highly accurate but are only point measurements compared to the area-averaged 

AOD retrievals from satellite instruments and reanalysis. The AOD retrievals from AERONET 

are highly accurate (Holben et al., 1998), but do not reveal much about the spatial distribution of 

AOD since they are only point measurements (Gupta et al., 2006). AERONET has grown to be a 

very expansive network, with 462 stations included in our study domain, and is a valuable 

evaluation and calibration dataset. As such, we used AERONET AOD data to evaluate the gap-

filling model but not as input. 

 We use AOD675 and AE440-675 from AERONET Version 3 Level 2 (quality assurance) 

between 10 a.m. and 2 p.m. local time. Version 3 offers a number of improvements over Version 
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2, including automatic cloud screening and instrument anomaly quality controls (Giles et al., 

2019) as well as a higher retention rate of high AOD values (Bhattacharjee et al., 2023). 

2.2.5 Satellite Remote Sensing of AOD 

Collection 6.1 (C6.1) was used for Terra and Aqua. DB was chosen over DT due to its 

increased accuracy over bright, reflective surfaces, common in the western U.S., and better 

characterization of AOD during smoke (Hsu et al., 2004; Loría-Salazar et al., 2021). Collection 

6.1 (C6.1) offers many improvements over Collection 6 (C6), including better radiometric 

calibration, heavy smoke detection, artifact reduction over heterogeneous terrain, improved 

surface modeling for elevated terrain, bug fixes, and updated regional/seasonal aerosol optical 

models (Wei et al., 2019). We used the DB AOD at 550 nm from C6.1, which is given at a 

resolution of 10 km x 10 km2. 

For VIIRS, the Version 1 dataset was used. This collection was chosen over the more 

recently released Version 2 because Version 1 DB AOD is algorithmically identical to the Terra 

and Aqua C6.1 DB AOD (Lee et al., 2016). This allows for a simple average to be taken over the 

data collected from the three satellites, which will be used as a training target and discussed later. 

In addition to the AOD retrievals, the model was given three supplemental aerosol variables 

collected by VIIRS. The DB AOD data from Version 1 is given at a 6 x 6 km2
 resolution. The 

first is aerosol type, a categorical variable with nine levels: no retrieval, dust, smoke, high 

altitude smoke, pyrocumulonimbus clouds, non-smoke fine mode, mixed (land and ocean), 

background (land and ocean maritime), and fine dominated.  The second is the algorithm flag 

over land, a categorical variable with four levels: no retrieval, arid DB, vegetated, and mixed. 

The last is the algorithm flag over the ocean, a categorical variable with four levels: no retrieval, 
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full retrieval, turbid/shallow, and mixed(Hsu et al., 2019; Sayer et al., 2018). These additional 

variables were included to provide the model with further information to track aerosol transport 

and evolution. 

2.2.6 Fire Radiative Power (FRP) 

 Fire radiative power (FRP) retrieved from MODIS Terra and Aqua (Giglio et al., 2016) 

was used to train the model. FRP is the radiative power from wild and prescribed fires, it is given 

in megawatts (MW) and can be used to characterize many fire properties (Archibald et al., 2013; 

Ichoku & Kaufman, 2005; Kaufman et al., 1998; Roy & Kumar, 2017; Wooster et al., 2003; 

Wooster & Zhang, 2004). It is retrieved using the brightness temperatures derived from the 

MODIS 4 µm and 11 µm channels (Giglio et al., 2003, 2016; Kaufman et al., 1998). By 

including FRP, the model can be trained with a notion of fire source regions, which are typically 

just a small subset of the total area occluded by wildfire smoke. This information can help to 

inform the model on the spread of the fire/smoke and the resulting AOD in the surrounding 

regions. 
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3. Methods 

3.1 Model Selection 

To estimate AOD, a model must be aware of complex, nonlinear interactions between 

weather, emissions, and aerosol types. DL is particularly well-equipped for dealing with these 

types of problems because DL models contain an extremely large number of parameters and non-

linearities. Furthermore, while it has been shown that neural networks with two layers, suitable 

activation functions, and sufficient width are universal function approximators (Barron, 1994; 

Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989), scaling models to be deeper rather than 

wider is more efficient in terms of total parameter count (Lu et al., 2017). These insights have led 

to the development of numerous different deep networks designed for a variety of difficult tasks 

throughout the past decade or so. 

The subfield of DL most likely relevant to AOD gap-filling is computer vision. Computer 

vision concerns the development of algorithms that can perform image-related tasks. These tasks 

range from simpler ones like colorization and classification (identifying the subject of an image), 

to more difficult ones like generation (hallucinating new images from the data distribution), 

inpainting (proposing contents for a missing interior portion of an image), and object detection 

(localizing and identifying objects within an image) (Goodfellow et al., 2014; Lecun et al., 1998; 

Redmon et al., 2016; Saharia et al., 2022). For most deep learning models within computer 

vision, a key component is the convolution. Convolutions are spatially local operators that output 

a linear combination of pixels within a patch. Neural networks built using convolutions are 

called convolutional neural networks (CNN’s) (O’Shea & Nash, 2015). CNN’s are a natural fit 

for computer vision tasks because convolutions are most appropriate for settings that satisfy the 
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locality assumption, i.e., objects (pixels in this case) are only directly influenced by its 

immediate surroundings (neighboring pixels) (Albawi et al., 2017). Problems within atmospheric 

science that work with regularly gridded data can be easily casted as computer vision problems, 

because data points can be interpreted as pixels of an image and different input datasets can be 

viewed as channels of the image (in the same way red, green, and blue channels compose an 

RGB image, for instance). 

One of the earliest DL computer vision models is the Visual Geometry Group (VGG), 

originally developed for image classification (Simonyan & Zisserman, 2015). It passes an input 

image through 16-19 convolutional layers and outputs a probability distribution over the 

different image classes. For use in AOD gap-filling, VGG can be adapted to output continuous 

values instead of a distribution. However, since the output of this adapted VGG would be a 1x1 

pixel, the operational use of VGG for gap-filling would be inefficient. This is because in gap-

filling two neighboring missing pixels, VGG would have to be run over two inputs that are 

mostly identical. This presents efficiency issues that can be avoided by using a different type of 

model architecture. 

In contrast, another class of CNN’s, the UNet (Ronneberger et al., 2015), seems 

particularly well-suited to this setting. While they were originally developed for image 

segmentation, much like VGG, UNets can easily be repurposed to output continuous values 

instead. However, unlike VGG, UNets have the same spatial dimensions for both its inputs and 

outputs. Moreover, different variants of UNet have achieved successful results in different 

applications, from medical image segmentation (Huang et al., 2020; Ronneberger et al., 2015; 

Zhou et al., 2018), image colorization/inpainting/uncropping/restoration (Saharia et al., 2022), 
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and meteorology (Appel, 2024; Justin et al., 2023). Given its applicability and track record, we 

chose to use a UNet for this research. 

There have been several UNet variants that have been developed since its inception, such 

as UNet ++ (Zhou et al., 2018), UNet 3+ (Huang et al., 2020), TransUNet (Chen et al., 2021), 

and more. We chose the UNet 3+ variant for this research because it had demonstrated state-of-

the-art performance in its original medical image processing field, beating out UNet and UNet++ 

while containing fewer parameters (39.39M and 47.18M compared to 26.97M, respectively). We 

chose UNet 3+ over attention-based architectures like ViT (Dosovitskiy et al., 2021) and UNet 

variants with attention components like TransUNet because empirical results suggest that 

attention-based models require larger training datasets and training time to reach convergence 

compared to fully convolutional networks like UNet 3+. On the other hand, UNet 3+ has reached 

state-of-the-art performance on extremely small datasets, for instance on the very small liver 

segmentation dataset (<1000 samples) from the ISBI LiTS 2017 Challenge (Huang et al., 2020). 

Since the training dataset we constructed was much closer in size to this compared to the 300 

million sample dataset (JFT-300M) used to train the ViT to state-of-the-art performance, UNet 

3+ was the clear choice (Dosovitskiy et al., 2021). However, networks with attention 

components may be accessible in the future once we curate larger datasets. 

3.2 Spatial/Temporal Projection 

3.2.1 Projection and Grid 

 Before training the UNet 3+, we regridded all data sources onto a unified input grid. This 

step is necessary because none of the data sources are collocated. For instance, modeled outputs 
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like those from NAM or MERRA-2 are given in different spatial resolutions and on different 

mapping projections. The same holds true for satellite-derived products such as AOD and HMS 

smoke as the satellites orbit over slightly different tracks each day, resulting in different 

latitude/longitude coordinates for retrievals. Information on spatial and temporal resolution for 

all datasets used for this research is displayed in Table 1.   

 We selected an Albers Equal Area (AEA) projection with the standard parallels set to 

29.5°N and 45.5°N. This projection minimizes scale distortion over the lower 48 states, which is 

capped at 1.25 percent according to the Understanding Map Projections guidebook by ESRI (M. 

Kennedy & Kopp, 2001). The input grid selected contains 360 rows and 515 columns of 12x12 

km2 squares. This setup maximizes area over CONUS. (Figure 7). 
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3.2.2 Temporal Selection 

 Much like with the spatial heterogeneity in the input data, the time of day measurements 

are made is similarly misaligned between the various models and instruments (Table 2). 

Source Temporal Resolution 

NAM 12km 0000, 0600, 1200, 1800 UTC daily 

MERRA-2 hourly 

HMS daily 

Figure 7: The proposed grid in red and the NAM 12km grid in gray. Both have 12x12 km2 resolution but are 

defined on different projections. 
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Terra 10:30 a.m. local time daily 

Aqua/S-NPP 1:30 p.m. local time daily 

Table 2: Temporal resolution of various input data. 

 Since the AOD retrievals from S-NPP, Terra, and Aqua were the primary training targets 

for our model, we selected from each dataset the daily data points that fell around 10:30 a.m. 

local time to 1:30 p.m. local time across CONUS. This corresponds to 18:30-21:30 UTC in PST 

and 15:30-18:30 UTC in EST. 

 At the start of the project, we worked only with the western U.S. and S-NPP, and thus 

decided to create a daily NAM dataset by averaging the 18:00 and 00:00 UTC datasets for each 

day. Since expanding to CONUS, we have not adjusted this averaging to account for the 

additional time zones and kept the same scheme. Further investigation into model performance 

and NAM averaging will be done in future work (see Section 4.3). 

 The  2-dimensional aerosol dataset from MERRA-2 that we included is hourly, but the 

output selected corresponds to 19:30 UTC. This was again motivated by the preliminary 

constraints of the western U.S. and S-NPP. HMS data is already in a daily format and focused on 

fires and smoke over CONUS, so no additional modifications were needed. 

 To create a singular DB AOD target for the model to train against, we averaged DB AOD 

retrievals from S-NPP, Terra, and Aqua. In this case, pixels with no retrieval for a particular 

satellite were not included in the averaging, and pixels with no retrievals from any satellites were 

assigned NaN. The goal of creating this DB AOD composite was to provide a more coherent and 

cohesive signal to the model, instead of three separate lossier signals. 

3.2.3 Regridding 
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Regridding was performed by first creating buffers around the data points of interest. 

These buffers were sized roughly following the documented resolutions of their respective data. 

Next, the buffered data was overlaid on the grid, and the intersections between the two were 

calculated (Figure 9). Finally, the intersections were grouped by their respective grid cells and 

their relative areas were compared to determine the weights. For continuous data variables, the 

value assigned to a grid cell after regridding is equal to the weighted average of all contributing 

intersections. The value associated with the intersection with the highest weight is chosen for 

categorical data variables. To illustrate this, Figure 8 shows a particular grid cell along with all of 

the NAM data buffers that intersect it. The two NAM buffers on the right would have high 

weights since they have significant intersections with the grid cell. However, the two buffers on 

the left would have much smaller contributions. The value in the lower right buffer would be 

chosen for categorical variables since it has the largest intersection. 

 

Figure 8: An example of how NAM data buffers (blue) may overlie a grid cell (red). 
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Expressed mathematically, if the intersections between the top left, top right, bottom left, and 

bottom right data buffers with the grid cell were 𝑎1, 𝑎2, 𝑎3, and 𝑎4, respectively, the value for a 

continuous NAM variable 𝑥 assigned to the grid cell would be  

∑
aixi

atotal

4
i=1                                 (Eq. 2) 

where 𝑥𝑖 is the value of that variable within data buffer 𝑖 and 𝑎total is the sum of all 𝑎𝑖. The value 

for a categorical NAM variable 𝑐 assigned to the grid cell would be  

cargmax(ai) = c2                                (Eq. 3) 

where 𝑐𝑖 is the value of the 𝑐 within data buffer 𝑖. 

3.3 Data Preprocessing 

3.3.1 Log Transform 

 A significant challenge with training a model directly on AOD data is the highly 

imbalanced nature of the dataset. (Thankfully,) the vast majority of AOD samples collected from 

AERONET and satellites are heavily skewed towards the lower values (AOD < 0.1). However, 

from a modeling perspective, this presents a very severe class imbalance problem. The class 

imbalance problem is where the training dataset contains more of a particular sample type than 

others. This can be a problem even if this skewed training distribution is representative of the 

“true” data distribution. In working with a model trained with some form of gradient descent and 

mean squared error (MSE) loss, most gradient descent steps will optimize for the more frequent 

sample classes and can end up “drowning out” the infrequent sample classes. 

 Preliminary testing with training the gap-filling model directly on AOD retrievals 

resulted in a model that only output low AOD values. One method to mitigate this issue is to add 
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greater distinctions between the different types of samples by taking the log transform of the data 

before feeding it into the model. The log transform, in this case, widens the distribution in the 

low-end where most of the samples are concentrated, giving the model a chance to learn a more 

dynamic range of outputs (Figure 9).  

 

Figure 9: A histogram of all log AOD values from satellite and some auxiliary MERRA-2 values (discussed in section 3.3.5). 

 Hence, all AOD data that is given to the model (i.e., satellite retrievals and MERRA-2 

AOD) are put through a log transform first.  

3.3.2 Normalization 
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 Another common challenge with training machine learning models on a diverse set of 

input data is sometimes different elements in the data have different expressive ranges, which 

can lead to convergence issues because it is difficult to accurately calculate the gradient at each 

step of the gradient descent algorithm if all the inputs going into the model have different scales. 

Therefore, a necessary preprocessing step is the normalization of the dataset prior to inputting it 

into the model (Jo, 2019; Singh & Singh, 2020). In our case, we chose to normalize to a range of 

0 to 1 (Ali & Faraj, 2014) Normalizing to a range of 0 to 1 is accomplished using the equation 

𝑥norm =
𝑥true−𝑥min

𝑥max−𝑥min
.                                (Eq. 4) 

 All continuous data, both for inputs and training targets, are normalized in this way 

before being given to the model. These consist of FRP, MERRA-2 AOD, satellite DB AOD, 

Psurf, Pmsl, Tsurf, T2m, DWT2m, orography, RH2m, U10m, V10m, vegetation, and PBLH. For the AOD 

values, this occurs after the log transform, using maximums and minimums of the log AOD 

values. 

3.3.3 One-Hot Encoding 

 The remaining variables (i.e., smoke density, aerosol type, and DB algorithm flag for 

land/ocean) are categorical variables and cannot be meaningfully normalized. However, as these 

variables are all stored as integer values from a predefined set (i.e., 1, 2, and 3 for light, medium, 

and heavy smoke, respectively), these assignments are arbitrary and do not make much sense 

when interpreted numerically (with the possible exception of smoke density since there is a 

natural ordering to its values). Instead, the classical approach to reformatting these variables for a 

more straightforward interpretation by the model is to use a one-hot encoding. This works by 

expanding a categorical variable with N categories into an N-length vector containing only zeros 
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except at the location associated with the value for the variable. If we have a variable 𝑥 which is 

of class 𝑐𝑖 out of 𝑐1 … 𝑐𝑛 classes, this is formalized by a one-hot vector  

𝑎𝑥 = ⟨0,0, … 1, … ,0⟩                                (Eq. 5) 

Where 𝑎𝑥,𝑖 = 1 and 𝑎𝑥,𝑗≠𝑖 = 0. 

For example, if we have a particular smoke density reading of heavy, and our one-hot encoding 

assignment is none, light, medium, and heavy from left to right, then the one-hot vector is 𝑎𝑥 =

⟨0,0,0,1⟩. This method benefits neural networks because it directly presents the view that certain 

properties are “switched on or off” instead of forcing the model to learn these properties. This is 

particularly true for variables like aerosol type or algorithm flag, which do not have any natural 

ordering. 

3.3.4 Missing Values 

 All NaNs in the data are converted to zeros before getting fed into the model. This is a 

common solution for dealing with missing values in deep learning, where the model is expected 

to  extract useful features from noisy and lossy data sources. 

3.3.5 MERRA-2 Augmentation 

 When training the model using purely DB retrievals, it can be noted from the resulting 

predictions that most (high-AOD) artifacts occur in areas that do not often get DB retrievals due 

to cloud cover or bright surfaces. An example of this is shown in Figure 10, where the model 

estimated unrealistically high values of AOD across the Pacific Northwest and southern Canada 

(Figure 10.a). These artifacts make it into the final gap-filled AOD product (Figure 10.c) because 
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of the lack of DB retrievals over those areas (Figure 10.b). Furthermore, MERRA-2 suggests no 

elevated AOD values in these areas (Figure 10.d). 

 

Figure 10: (a) UNet 3+ AOD predictions, (b) DB retrievals, (c) gap-filled AOD, and (d) MERRA-2 AOD for December 11, 2012. 

Gap-filling performed by the gap-filler model trained on only (weighted) satellite DB AOD retrievals. 

Comparing this to the AOD data availability map for winter shown in Figure 11.a, it 

seems plausible that the lack of data in these regions either directly or indirectly leads to the 

generation of these artifacts. The model likely learns to correlate areas of missing aerosol data 

with high AOD. This behavior is probably learned through cases where extremely optically thick 

pyro cumulonimbus clouds are partially flagged for removal. Reinforcing this pattern in the 

model could inadvertently lead to the mistaken association between locations that did not receive 
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an AOD retrieval due to cloud cover or snow reflectivity and those that did not receive an AOD 

retrieval due to dense smoke plumes. 

  

 

Figure 11: The percentage of days with a successful DB AOD retrieval from 2012-2022 categorized by season. 

A composite of both DB AOD retrievals and MERRA-2 AOD estimates was created and 

used as the training target to mitigate this issue (Figure 12). The first layer of this composite is 

comprised of the DB AOD retrievals (Figure 12.a), as these are preferred as training targets over 

MERRA-2 AOD whenever available. The second layer is comprised of MERRA-2 AOD, but 

only for the grid cells where there is no DB AOD retrieval available, and monthly AOD data 

availability is less than 40% (Figure 12.b). The monthly AOD data availability is calculated by 

taking all DB AOD retrievals over the 2012-2022 study period, grouping them by grid cell and 

month, and calculating as a percentage of how many days a particular grid cell saw an AOD 

retrieval within a given month. The threshold of 40% was chosen loosely based on results from 
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the preliminary study, which suggested that areas that received data at least 50-60% of the time 

would yield few artifacts. The threshold of 40% covers enough area to prevent the model from 

generating high AOD artifacts while not completely saturating the training data with MERRA-2 

AOD labels. 

 

Figure 12: (a) DB AOD retrievals along with (b) supplemental AOD from MERRA-2 for November 12, 2012. 

3.4 Model Training 

3.4.1 Model Inputs 

The gap-filled AOD model was input with the two previous days’ AOD values along 

with meteorology, land-use, etc. variables to inform transport, evolution, and deposition patterns 

of aerosols into the third (target) day. All input variables used and their respective lags are listed 

in Table 3. 

Input Variable Resolution Lag (days) 

NASA MODIS DB Best Estimate AOD 10 x 10 km2 2, 1 

VIIRS DB Best Estimate AOD 6 x 6 km2 2, 1 

VIIRS DB aerosol type, land and ocean algorithm flags 6 x 6 km2 2, 1 
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NAM 12km reanalysis – P, T, U, V, orography, 

vegetation, PBLH 

12 x 12 km2 2, 1, 0 

MERRA-2 reanalysis AOD 50 x 62.5 km2 2, 1, 0 

HMS Smoke Product ~1 km 2, 1, 0 

MODIS FRP ~1 km 2, 1, 0 

Table 3: Input variables, native resolutions, and lags provided to the model. 

3.4.2 Target Weighting 

To further counteract the class imbalance problem, we modified the loss function to 

punish the model more for mistakes on high AOD pixels than low AOD pixels by adding a large 

multiplier to the squared error between high AOD samples and their respective predictions. This 

artificially inflates the MSE between high AOD samples and their predictions, while keeping the 

MSE for low AOD samples the same. Doing so will make the loss for high AOD samples so 

high that they cannot be ignored during training, despite only accounting for a small portion of 

the training dataset. In practice, weighting AOD samples according to user-defined thresholds 

has the effect of boosting model sensitivity to those thresholds relative to the assigned weights. 

This method allows for added user control over model characteristics. The weights chosen are 

listed below in Table 4. 

AOD Weight 

0 < τ ≤ 0.3 1 

0.3 < τ ≤ 1 3 

1 < τ ≤ 2 5 

2 < τ ≤ 3 10 
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3 < τ 15 

Table 4: Target AOD weights. 

3.4.3 Selective Backpropagation 

 Even with MERRA-2  AOD supplementing the target, there are still missing pixels. This 

is a challenge for supervised learning because training labels must be defined to tune the model 

weights. Our proposed solution for this challenge is simply to train using the available pixels 

(i.e., just the pixels with defined AOD values), in the backpropagation while ignoring the 

undefined ones. A simple illustration of this concept on a multilayer perceptron (MLP) can be 

seen in Figure 13. This is accomplished by setting the target weight matrix to zero for pixels with 

undefined AOD, and effectively backpropagates the loss through only the defined pixels because 

the undefined pixels do not contribute any loss to the loss function. 

 

Figure 13: The effect of selective backpropagation on a simple MLP model. 

3.4.4 Loss Function and Optimizer 

 The loss function is a composite one, consisting of a linear combination of the weighted 

sum of squared errors (SSE), which I will refer to as the pixel loss, and the multi-scale structural 
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similarity index (MS-SSIM), which I convert into a patch loss. The prior optimizes the accuracy 

of each pixel, while the latter maintains coherence in the overall structure of the constructed 

AOD map (Huang et al., 2020). 

 The pixel loss is calculated as 

𝑙pixel = ∑ 𝑤𝑝(𝑦𝑝̂ − 𝑦𝑝)
2

𝑝∈𝑃                                 (Eq. 6) 

where 𝑃 is the set of all AOD pixels, 𝑦𝑝̂ is the model prediction at pixel 𝑝, 𝑦𝑝 is the actual AOD 

value at pixel 𝑝, and 𝑤𝑝 is the training weight associated with pixel 𝑝. 

 MS-SSIM considers various metrics that roughly correspond to the luminance, contrast, 

and covariance of predicted and actual values within several differently sized sliding windows. It 

was developed by Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik initially for image quality 

assessment , but was converted into a loss term in the original UNet 3+ paper as well (Huang et 

al., 2020). Since MS-SSIM ranges from 0 (worst score) to 1 (perfect score) and loss functions 

need to increase as performance worsens, MS-SSIM is converted into the patch loss simply by 

subtracting it from one. 

 These two losses are combined as a linear combination, i.e. 

𝑙 = α𝑙pixel + β𝑙patch                                (Eq. 7) 

This loss function is the one the model is trained on. 

 We use the Adam optimizer to tune the model weights during training. Adam is a 

momentum-based gradient descent algorithm developed by Kingma and Ba (2017) that 

efficiently computes adaptive learning rates for different model parameters (Kingma & Ba, 

2017). Momentum-based optimizers are preferable to vanilla gradient descent in this research, 

where memory limitations necessitate small batch sizes, and the gradient descent path is likely 
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very erratic. Momentum-based learning schedulers have been shown to smooth this trajectory 

and speed up convergence in many problems. 

3.4.5 Training Hyperparameters 

 The loss function parameters are α = 1𝑒 − 5, β = 1𝑒 − 2. The learning rate is 1𝑒 − 5. 

The weight decay is 1𝑒 − 5. The Adam parameters are left as the defaults recommended by the 

original paper(Kingma & Ba, 2017). The batch size was set to either 1 or 2 depending on the 

availability of GPU’s (2 for A100 and 1 for 3090).  

The complete dataset was split into 90-10 training/validation datasets. Validation was 

performed at the end of every epoch to guard against overfitting. 

3.4.6 Input/Output Dimensionality 

 Considering the grid size of 360x515, the large model size, and limited GPU memory, we 

chose to make the inputs 352x352x90, essentially a 352x352 map for each of the 90 input 

variables. The 352 comes from the architectural requirement that the input must be divisible by 

25 in each of the spatial dimensions. Samples are drawn from the northernmost 352 pixels, with 

one sample from the westernmost 352 pixels and another from the easternmost 352 pixels. This 

results in an overlapping region in the middle. The output is 352x352x1, i.e., the target AOD 

map. 
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3.5 Metrics 

 We use a few basic statistical metrics to evaluate the performance of the gap-filling 

model. The first is root mean square error (RMSE), which signifies the average distance between 

predictions 𝑦𝑖̂ and targets 𝑦𝑖 and is given by 

RMSE = √
1

𝑁
∑ (𝑦𝑖̂ − 𝑦𝑖)2𝑁

𝑖=1 .                                (Eq. 8) 

 The Pearson correlation coefficient 𝑟 indicates to what degree the predictions and target 

vary with each other, with 1 being perfectly correlated and -1 being perfectly inversely 

correlated. It is given by 

𝑟 =
𝑐𝑜𝑣(𝑦̂,𝑦)

σ𝑦̂σ𝑦
.                                (Eq. 9) 

 The coefficient of determination 𝑅2 indicates the fraction of variance explained by the 

model. It is given by 

𝑅2 = 1 −
𝑆𝑆res

𝑆𝑆tot
                                (Eq. 10) 

where 𝑆𝑆res = ∑ (𝑦𝑖̂ − 𝑦𝑖)
2𝑁

𝑖=1  is the residual sum of squares and 𝑆𝑆tot = ∑ (𝑦𝑖 − 𝑦)2𝑁
𝑖=1 is the 

total sum of squares. 𝑅2 is equal to 1 when the model perfectly predicts all values, 0 when the 

model always predicts the mean of the dataset, and can extend into the negatives if it performs 

worse. 

 The normalized mean bias indicates the average bias of predicted values as a fraction of 

the average true value, and is given by 

𝑁𝑀𝐵 =
∑ (𝑦𝑖̂−𝑦𝑖)𝑁

𝑖=1

∑ 𝑦𝑖
𝑁
𝑖=1

.                                (Eq. 11) 

This value will be positive if the model tends to overestimate and negative otherwise. 
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To compute these metrics, outputs from the model are collocated with AERONET 

stations within a 25 km radius, as per (Hsu et al., 2019; Sayer, 2020). Comparisons are made 

using UNet 3+ predictions and the gap-filled product as well as satellite DB AOD retrievals and 

MERRA-2 AOD as a point of comparison. 

 AERONET AOD was interpolated to 550 nm to match DB AOD retrievals according to 

Eck et al., (1999) 

𝐴𝑂𝐷550𝑛𝑚 ≈ 𝐴𝑂𝐷675𝑛𝑚
675𝐴𝐸440−675𝑛𝑚

550𝐴𝐸440−675𝑛𝑚
.                                 (Eq. 11) 

 We use visual inspections to evaluate the model qualitatively and comparing them to 

satellite visible imagery. This is an imperfect mode of analysis due to the fact that many of the 

obstacles stopping AOD retrieval algorithms also prevent visual analysis (i.e., cloud cover), but 

certain desirable and undesirable features can be noted by a satellite, aerosol, and atmospheric 

composition expert such as my advisor Dr. Loría-Salazar. 
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4. Results and Discussion 

4.1 Quantitative Results 

4.1.1 Comparison With AERONET 

 The performance metrics of MERRA-2 AOD, satellite DB AOD, UNet 3+ AOD, and 

gap-filled AOD against AERONET AOD can be found in Table 5. The RMSE~0.09 and r~0.79 

indicate that UNet 3+ and gap-filled AOD values generally do not deviate from AERONET 

AOD values and follow the same overall trend. The R2~0.34 suggests that UNet 3+ AOD 

struggles to capture as much of the variance in AERONET AOD as MERRA-2 (R2~0.56) or DB 

(R2~0.41). However, the gap-filled AOD does not have as much of this problem, as its R2~0.51 

is on par with that of MERRA-2 and satellite. The R2 values are difficult to interpret due to the 

extreme skewness of the AOD distribution. Due to this skewness, the majority of variance in the 

data comes in the form of small fluctuations around (low) baseline AOD values. AERONET 

AOD, for example, has a mean of 0.096 and a standard deviation of 0.11. It is  challenging to 

capture a large percentage of these minor fluctuations, as evidenced by the low MERRA-2 and 

DB R2 values. However, characterizing these small fluctuations in certain contexts, such as air 

quality studies, has a low impact on results as long as the overall AOD loading is characterized 

correctly (i.e., low/medium/high aerosol loadings). The NMB shows that all AOD products have 

a positive bias (~ 20%) against AERONET. Superimposing DB AOD on top of UNet 3+ AOD to 

create the gap-filled AOD increases NMB from 19.1% to 21.4%, despite satellite DB AOD 

generally having a lower NMB of 17.3%. This suggests that UNet 3+ tends to overestimate 
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AOD, particularly in areas with DB retrieval gaps. Finally, gap-filling the satellite DB AOD 

retrievals results in an additional ~30,000 collocated observations with AERONET over the 11-

year period. 

 

 RMSE r R2
 NMB N 

MERRA-2 0.07 0.78 0.56 19.5% 138,709 

DB 0.09 0.82 0.41 17.3% 108,725 

UNet 3+ 0.09 0.79 0.34 19.1% 138,709 

Gap-Filled 0.08 0.84 0.51 21.4% 138,709 

Table 5: Statistics of MERRA-2 AOD, DB AOD, UNet 3+ AOD, and gap-filled AOD against AERONET AOD 

 The corresponding scatterplots are shown in Figure 14. MERRA-2 (Figure 14.a) appears 

to underestimate most AOD values larger than 1 but is reasonably accurate for lower values of 

AOD (RMSE~0.07, r~0.78, NMB~19.5%). DB (Figure 14.b) on the other hand appear to 

overestimate most AOD values larger than 1. There also appears to be a cluster of points where 

DB suggested high AOD (> 0.5) despite collocated AERONET retrievals at around 0.1. This is 

likely due to smoke plumes within a DB retrieval pixel but not directly over an AERONET 

station, but further investigation is required to confirm this. The statistical evaluation for DB 

shows RMSE~0.09, r~0.82, and NMB~17.3%. UNet 3+ (Figure 14.c) has performance metrics 

(RMSE~0.09, r~0.79, NMB~19.1%) similar to the previous two comparisons. However, unlike 

MERRA-2, it appears to overestimate at higher values of AOD (>0.3). Also, it lacks the cluster 

of overestimations for low AOD values mentioned previously for DB, suggesting that there is a 

systematic mischaracterization of certain low AOD events by DB that UNet 3+ can avoid. The 

gap-filled AOD (Figure 14.d) shows some of the best performance metrics yet (RMSE~0.08, 
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r~0.84, NMB~21.4%), combining the high correlation from DB with the low RMSE from 

MERRA-2 and proper characterization by UNet 3+. 

 

Figure 14: Scatter plots of (a) MERRA-2 AOD, (b) DB AOD, (c) UNet 3+ AOD, and (d) gap-filled AOD against AERONET AOD 

at 550 nm. The color scale represents the density of samples, and the black line represents the 1:1 line. 

4.1.2 Spatial Evaluation  

A spatial evaluation between UNet 3+ and DB AODagainst AERONET AOD is shown 

in Figures 15-19, the figures show results from spatial RMSE, r, and R2 between AERONET and 

UNet 3+/DB for all stations that had at least 1,000 collocated points throughout the study period. 

From overall evaluations (Figure 15), UNet 3+ performs slightly better in RMSE throughout 
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eastern CONUS and the Midwest than DB, e.g., RMSE~0.12 in Illinois and Texas for DB 

compared to RMSE~0.07 for UNet 3+. The main improvement here is arguably the increased 

coverage since RMSE is already relatively low in this region. Note the increased number of 

station points in the northern half of the map due to the gap-filling. 

UNet 3+ appears to struggle the most in the Pacific Northwest. RMSE’s in this region are 

increased to around 0.15-0.25, compared to the <0.07 values present throughout the rest of 

CONUS. However, DB AOD retrievals also show similar difficulty in properly characterizing 

AOD loadings in this region. This is likely due to the complex smoke loading and heterogeneous 

vertical transport, involving fresh smoke from local sources and  aged smoke transported from 

long range. VIIRS and MODIS spectral channels might be challenged in characterizing the 

loading of aged smoke, as these are better detected in the UV band. This challenge could be 

resolved with the upcoming NASA PACE mission equipped with the Ocean Color Instrument 

(OCI) with a hyperspectral band (ultraviolet - shortwave infrared). Because of the MODIS and 

VIIRS spectral bands, aerosol retrievals need to assume the aerosol absorption nature and the 

aerosol height. Due to the spectral band capabilities of OCI, it will be possible to retrieve aerosol 

loading without assuming either aerosol absorption or height components (Personal 

communication with Dr. Andrew Sayer, NASA PACE Mission Lear Scientist). 
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Figure 15: Spatial statistical evaluation of UNet 3+ and DB AOD against AERONET stations throughout CONUS with at least 

1,000 collocated observations. 

Figure 17, Figure 18, Figure 19, and Figure 19 show the same analysis as the previous 

one but separated by season. These seasonal maps instead select stations that have at least 200 

collocated points. For winter (Figure 16), we can see UNet 3+ achieves very low RMSE (<0.01) 

everywhere except for a few select stations in California where it reaches ~0.11. UNet 3+ 

performs roughly the same as DB in terms of RMSE. Notable discrepancies include the 

aforementioned stations in California, where UNet 3+ (~0.11) performs worse than DB (~0.7), as 

well as Nevada, Texas, and Illinois, where DB (~0.12) performs worse than UNet 3+ (0.7). 
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The coverage gains with gap-filling are very pronounced in winter. For DB, the northern 

half of CONUS is missing, but recovered in the UNet 3+ maps. Since AOD values are 

chronically low throughout the winter and lack much variance for UNet 3+ to capture, r and R2 

values are also low. 

 

Figure 16: Spatial statistical evaluation over winter (DJF) of UNet 3+ and DB AOD against AERONET stations throughout 

CONUS with at least 200 collocated observations. 

In the spring (Figure 17), RMSE is still generally low for both UNet 3+ and DB. UNet 3+ 

RMSEs are all below 0.1, while just a few DB RMSEs peak past 0.1. However, a clear 

distinction between east and west can be seen in the r and R2 maps, where the west performs 



51 

 

noticeably worse than the east for both UNet 3+ and satellite. Namely, for UNet 3+, r values do 

not drop below 0.7 in the eastern U.S. but do not exceed 0.65 in the western U.S. except for one 

station. This pattern is mirrored in DB, where several stations in the western U.S. are near 0. This 

drop in performance is in line with previous investigations of AOD retrievals in the semi-arid 

western U.S. (Loría-Salazar et al., 2016). It hints at an intrinsic limit in AOD gap-filling 

performance with the given data inputs. Another explanation as to the lower correlations in the 

western U.S. is described in Sayer et al., (2019), which notes the lower correlation between 

Terra, Aqua, and VIIRS collection 6.1 DB AOD and AERONET over this region due to the 

relatively lower dynamic range of AOD (e.g. over clean mountainous sites) and positive outliers 

such as dry lake beds and cities in rugged terrain which are difficult to characterize (Sayer et al., 

2019). 
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Figure 17: Spatial statistical evaluation over spring (MAM) of UNet 3+ and DB AOD against AERONET stations throughout 

CONUS with at least 200 collocated observations. 

During the summer (Figure 18),  the Pacific Northwest has lower evaluation metrics (e.g., 

RMSE>0.2 and R2~0 for a few stations). This is likely because summer is peak wildfire season 

and characterizing the exact values of elevated AOD levels (AOD>0.3) in smoke clouds is still 

difficult for UNet 3+. DB also struggles with this region in the summer, with all AERONET 

stations in this area having an RMSE>0.1. Compared to winter and spring, RMSE’s become 

higher in more areas due to the increased dynamic range of AOD during this season. This is 

apparent in California, Colorado, the Midwest, and parts of the U.S. east coast. UNet 3+ 
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estimates are also now more correlated with AERONET retrievals, with all stations having a 

correlation of at least r~0.55. However, the R2 map for UNet 3+ reveals a select number of 

stations in California, Montana, Colorado, Alabama, Florida, and Virginia with negative R2, 

which implies biased estimates over those areas. Most of these stations also suffer from negative 

R2 values with DB, suggesting that these biases are learned from training against DB retrievals. 

 

 

Figure 18: Spatial statistical evaluation over summer (JJA) of UNet 3+ and DB AOD against AERONET stations throughout 

CONUS with at least 200 collocated observations. 
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 Model performance in the fall (Figure 19) seems to be better than in the summer, 

particularly for the eastern U.S. which sees RMSEs drop and rs rise. The Pacific Northwest, 

California, and Florida remain challenging locations for the model. 

 

Figure 19: Spatial statistical evaluation over fall (SON) of UNet 3+ and DB AOD against 

AERONET stations throughout CONUS with at least 200 collocated observations.Figure 20 

shows residuals as a function of AERONET AOD values (AODUNet 3+ - AODAERONET), with the 

blue line showing the mean residual and red area denoting ±1 standard deviation, i.e. 68.2. For 

low-medium (0.1<AOD<0.3) AOD events, UNet 3+ has a low bias (<0.2 at 550 nm). However, 
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for higher AOD loadings (AOD >0.3) both the uncertainty and bias grows significantly (> 1.5 at 

550 nm).x

 

Figure 20: Residuals of UNet 3+ AOD against AERONET AOD. Blue denotes the average residual and red denotes one standard 

deviation. 

Figure 21 shows the composite of the daily differences between UNet 3+ predictions and 

DB AOD retrievals. Over CONUS, UNet 3+ and DB AOD are well aligned apart from the 

Pacific Northwest, where UNet 3+ has overestimated AOD levels by around 0.1 due to wildfire 

smoke, and east of Hudson Bay, where UNet 3+ has underestimated baseline AOD loadings (~-

0.1). 
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Figure 21: Composite difference between UNet 3+ AOD and satellite DB AOD. 

The winter composite (Figure 22) presents challenges for interpretation due to the 

deficient quantity of retrievals in the northern U.S. and Canada. Still, UNet 3+ accuracy in this 

region likely suffers over the winter. The UNet 3+ training over this region in the winter is 

mainly guided by MERRA-2 AOD and not DB AOD retrievals (Figure 11.a). 
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Figure 22: Composite difference between UNet 3+ AOD and satellite DB AOD for winter (DJF). 

In the spring (Figure 23), there appears to be a systematic underestimation of AOD of at 

least 0.1 south of Hudson Bay and in Quebec and Newfoundland. A thin strip of the western 

coast of British Columbia also experiences systemic underestimation of at least 0.1. Finally, 

UNet 3+ tends to slightly overestimate AOD by around 0.03 throughout various parts of CONUS 

(Rocky Mountains, Appalachia and the Midwest, and Southern Texas/Northwestern Mexico). 
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Figure 22: Composite difference between UNet 3+ AOD and satellite DB AOD for spring (MAM). 

 In the summer (Figure 3), UNet 3+ seems to overestimate, most notably in the Pacific 

Northwest (>0.1) and south of Hudson Bay (~0.05), most likely due to increased smoke presence 

across these regions due to wildfire season. Further analysis with AERONET needs to be 

performed to determine the degree of overestimation. The clusters of overestimations from the 

spring map appear to disperse, although they are still present. AOD in many regions bordering 

the Gulf of Mexico and the Caribbean is underestimated by around 0.1 in the summer likely due 

to the persistent cloud cover during this season in this region. 
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Figure 23: Composite difference between UNet 3+ AOD and satellite DB AOD for summer (JJA). 

 In the fall (Figure 24), UNet 3+ predictions align with DB retrievals outside of the Pacific 

Northwest, due to wildfire smoke, which can still occur in September and October. UNet 3+ 

again seems to overestimate AOD values in this region by up to 0.1. However, all other regions 

are within ±0.03 of DB on average. 
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Figure 24: Composite difference between UNet 3+ AOD and satellite DB AOD for fall (SON). 

 

4.1.3 Comparison with Existing Methods 

Method RMSE R Region Source 

Bayesian (still has gaps) 0.08-0.13 0.89-0.93 India Singh et al., 2017 

Bayesian Maximum Entropy (still 

has gaps) 

0.29 0.75 China Tang et al., 2017 

Random Forest 0.20 0.60 China Jiang et al., 2021 

Multi-Stage Spatiotemporal Fitting 0.24-0.27 0.84-0.88 China Zhang et al., 2021 

Tensor Completion 0.21 0.91 China Bai et al., 2022 

4D-STET Did not 

report 

0.73 Global 

(land) 

Wei et al., (2023) 
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UNet 3+ 0.08 0.84 CONUS Lee et al., in prep 

Table 6: A collection of AOD gap-filling models and their performance. 

Table 6 shows the statistical performance of previous gap-fill models.  From Table 6, the 

gap-filled product from UNet 3+ performs either better or on-par with a selection of modern gap-

filling methods when evaluated against AERONET for RMSE and r. UNet 3+ gap-filling scores 

the lowest RMSE, and its r is only surpassed by Bayesian merging (Singh et al., 2017), tensor 

completion (Bai et al., 2022), and the multi-stage spatiotemporal fitting developed by Zhang et 

al. (2021).  

The Bayesian merging approach yields a daily AOD product with excellent performance 

metrics. Unfortunately, since the technique still relies on composing AOD retrievals from 

various satellites (MODIS and MISR in the original study), the resulting maps still have gaps 

where none of the input satellites could perform a retrieval. Also worth noting is that the authors 

accounted for “the error distribution of AOD from AERONET data” (Singh et al., 2017), 

meaning the model is directly optimized for estimating AERONET AOD densities. Despite the 

fact the UNet 3+ model we trained is AERONET-agnostic (i.e., it was not trained on any 

AERONET data), it still performed relatively well according to the statistical evaluation. 

The tensor completion approach developed by Bai et al., (2022) introduces a workflow 

that is more similar to our methodology. AOD data from multiple satellite instruments (Terra 

MODIS, Aqua MODIS, Terra MISR, Suomi-NPP VIIRS, Envisat AATSR, and PARASOL 

POLDER) and MERRA-2 is first fed into a set of pre-processing models that regrids everything 

to a 1 km resolution using meteorology and land-use auxiliary variables. To perform the gap-

filling, the regridded AOD tensors are passed into the higher-order singular value decomposition 

(HOSVD), with the MAIAC AOD product from Terra as a baseline. The authors used this 

method to create a long-term (2000-2020) daily 1 km resolution AOD dataset over China. 
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It is worth noting that the vast majority of AOD gap-filling efforts have been focused on Asia, 

specifically China, as indicated by Table 6. As such, the metrics provided in the table can only 

serve as a rough point of comparison since the data sources over North America and China have 

different distributions, biases, and other characteristics. For instance, Bai et al., (2022) found that 

Aqua and Terra MODIS MAIAC retrievals over China had an RMSE of 0.13-0.14 and r of 0.95, 

and SNPP VIIRS MAIAC retrievals had an RMSE of 0.22 and r of 0.80. This contrasts with the 

RMSE of 0.09 and r of 0.82 for the satellite AOD composite used for our study. The approach 

we are presenting in this study holds value because it is the first AOD gap-filling model that can 

achieve performance metrics comparable to those developed in historically much more studied 

regions. 

4.2 Qualitative Results 

Due to the relatively sparse coverage of AERONET stations throughout CONUS and 

surrounding regions, it is also important to examine if model predictions are plausible when 

considering seasonality, location, and satellite imagery. This section presents some case studies 

that provide insight into the model’s strengths and weaknesses. As mentioned in the introduction, 

two prominent high AOD features that an AOD model should ideally be able to characterize 

correctly are plumes of wildfire smoke and elevated aerosol loadings due to temperature 

inversions.  

4.2.1 Temperature Inversions 
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Figure 25: Haze trapped over Sacramento Valley (circled in  red) during a temperature inversion on November 15, 2014. 

Source: NASA Terra visible image. 

One region in the western U.S. that commonly experiences increased surface air pollution 

due to temperature inversions is the Central Valley in California. These events can be visible to 

the naked eye, provided no clouds cover the area. One such event occurred on November 15, 

2014. Terra visible imagery shows most of the Central Valley is covered in a thin haze (Figure 

25). This haze is notably strong in the southern tip of the valley and raises AOD values to around 

0.2 based on available DB retrievals (Figure 26.b). However, due to cloud cover, DB retrievals 

over this area are incomplete (Figures 25 and 26.b). MERRA-2 only predicts increased AOD 

values of around 0.2 in just the northern part of the valley (Figure 26.d). On the other hand, UNet 
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3+ proposes increased AOD values of around 0.2 throughout the entire valley (Figure 26.a). The 

latter is a more accurate representation of aerosol loadings based on visible imagery. The gap-

filled AOD refines the exact placement of the haze while providing reasonable estimates for the 

cloud-obstructed areas (Figure 26.c). 

 

Figure 26: (a) UNet 3+, (b) DB, (c) gap-filled, and (d) MERRA-2 AOD for November 15, 2014. 

 The ability of UNet 3+ to predict increased AOD due to temperature inversions in 

California is made possible by the availability of DB retrievals in the area during such events. 

However, for regions like the Pacific Northwest that are more commonly covered by clouds (i.e., 

Idaho, Washington, Montana, Wyoming, etc.), such predictions are impossible without adding 

emissions data to UNet 3+. 

4.2.2 Wildfire Smoke 
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Figure 27: Wildfires over Canada (circled in red) and the Midwest (circled in green) generated heavy smoke plumes affecting 

North America on June 30, 2015. Source: NASA Terra visible image.. 

 On June 30, 2015, multiple wildfires were experienced throughout Canada, primarily in 

Saskatchewan and Alberta (circled in red), as well as throughout the Midwest (circled in green) 

(Figure 27). Parts of these smoke plumes were occluded by cloud cover, leading to gaps in DB 

AOD retrievals (Figure 28.b). Figure 28.D shows that MERRA-2 generally retrieves high AOD 

(>3.0) around the fire source locations. However, MERRA-2 underestimates the loading and 

advection for both the Canadian and U.S. wildfires, as seen from the steep drop-off to AOD 

values around ~1.5 surrounding the source regions. UNet 3+ can capture the loading and spread 

of wildfire smoke (Figure 28.a). For the Canadian fires, the general nature of the northern (non-

cloud-occluded) part of the smoke plume is captured by UNet 3+. However, similar to MERRA-

2, the loading is not as high as suggested by satellite retrievals. UNet 3+ predicts AOD values ~3 

for a larger area than MERRA-2, which is more in line with the DB retrievals of >3 for the entire 

plume. UNet 3+ suggests that the southern part of the plume (cloud-occluded) is also very dense, 

which we were not able to evaluate due to missing retrievals but does make sense contextualized 
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by the available satellite retrievals in the gap-filled AOD. Similarly, for the smoke plume over 

the Midwest, UNet 3+ suggests more reasonably elevated AOD values of around 2.5-3 over Iowa 

and Missouri compared to MERRA-2, which suggests values of around 1.5 for most areas and 3 

for just the source region. The same observation extends to Tennessee and Kentucky as well, 

where MERRA-2 proposes values of AOD from ~1.5 to ~2 but DB AOD retrievals are ~2.5. 

 

Figure 28: Wildfires over Canada (circled in red) and the U.S. (circled in green) on June 30, 2015. Source: NASA Terra. 

4.3 Future Work 

 As the work presented in this thesis has primarily been exploratory and the numerous 

possibilities to be explored are gated behind cluster core hours, many of the design and 

engineering choices made from start to finish were based on qualitative assessment and not 
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rigorous experimentation. As a result, future work on this project will be focused primarily on 

three objectives: 

1. Developing a rigorous testing environment to quantify the performance of various model 

designs and configurations.  

2. Expanding the collection of models to test the viability of different model inputs, 

hyperparameters, architectures, and training paradigms. 

3. Exploring methods to explain the scientific mechanisms underlying trained models. 

 

The first priority for future work is to develop an environment in which new models can 

be trained, validated, tested against a suite of performance metrics, and their results archived. 

Such an environment is required to systematically discover optimal combinations of inputs, 

architectures, and hyperparameters. 

 Once such an environment is developed, the next generation of gap-filling models can be 

developed. The focus of these new models will be many-fold: perform density estimation in 

order to provide uncertainty estimates and better capture the multi-modalities associated with 

transport and different aerosol types; test emissions inventories as a data source to help with 

urban and wintertime predictions; test regional/seasonal models; improve output resolution; 

develop forecasting models; and apply explainability techniques to determine key variables and 

dissect the mechanisms behind AOD gap-filling. 

A significant focus for future work is how best to incorporate new data from PACE OCI. 

The at-launch application of DB to PACE OCI will be similar to that of MODIS and VIIRS, 

except at finer spatial resolution; however, due to increased spectral coverage, it is anticipated 

that improved aerosol type products (e.g., fine-resolution UV absorbing aerosol index, fine mode 

fraction) and an aerosol height product may become available. Additionally, PACE's two multi-
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angle polarimeters will be able to provide more detailed aerosol microphysical categorization 

(e.g., size, sphericity, absorption). These upgrades could improve heritage aerosol property 

retrievals and offer valuable inputs to the gap-filling model. Given these improvements, 

assimilating PACE data into the existing gap-filling model trained on current DB data would be 

ideal for improving model performance. However, the methods for assimilating PACE AOD 

present some challenges due to new instrument calibration in the retrieval algorithm. I plan on 

testing statistical methods, such as taking the weighted average of all DB AOD sources or a 

weighted average of model outputs run on both current and next-generation data, as well as 

machine learning methods like transfer learning through fine-tuning the model in an online 

setting as PACE generates data. 

Another future area of focus is bias correction. Current results show that the model can be 

skewed in specific regions and seasons. For example, the current model appears to overestimate 

AOD in the Pacific Northwest during wildfire season and underestimate AOD across southern 

Canada throughout the winter because it follows the trends of DB AOD. This is an inevitability 

due to the fact that we are training against DB AOD, which is an imperfect estimation of AOD. I 

plan to test methods such as subtracting the seasonal composite error between UNet 3+ and 

satellite products, training separate regional models, and detrending AOD data/predicting 

anomalies. 
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5. Summary 

This thesis aimed to test the viability of UNet 3+, a deep learning (DL) architecture, as an 

architecture for aerosol optical depth (AOD) gap-filling. We tested the hypothesis that UNet 3+ 

trained on Deep Blue (DB) AOD and supplemental datasets, will improve spatial-temporal 

coverage of AOD missing data due to cloud cover and bright surfaces (e.g., semi-arid or arid 

deserts, snow, and ice).  

The spatiotemporal gap-filling of AOD was performed daily over the CONtinental 

United States (CONUS) at a 12 x 12 km2 resolution from 2012-2022. This was achieved by 

training the model on DB AOD and fire radiative power (FRP) from polar-orbiting satellites (i.e., 

Terra, Aqua, Suomi-NPP), AOD from the Modern-Era Retrospective Analysis for Research and 

Applications, Version 2 (MERRA-2) reanalysis, meteorological and land-use variables from the 

North American Mesoscale Forecast System (NAM), and smoke polygons from the Hazard 

Mapping System (HMS). With the above in mind, we found that: 

• Training the model to converge at a useful solution (i.e., one that predicts an accurate and 

dynamic range of AOD values from extremely clean (~0) to intense wildfire smoke (>3)) 

is contingent on a few data preprocessing steps, namely log transformation of AOD, data 

normalization, sample weighting, and training target augmentation.  

• The resulting model infers aerosol loading and transport through modeled meteorological 

variables and DB AOD data when available. Where DB AOD is too sparse to provide 

enough context, the model provides upscaled MERRA-2 AOD values. 

• The covariates chosen as inputs for the model enable the recognition of the first day of 

smoke in small fires (HMS and FRP), transport of aerosols (NAM), increased aerosol 
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loading due to temperature inversions, especially over California, and low aerosol loadings 

(MERRA-2 AOD). 

• The model struggles most with areas that are sparse in satellite aerosol data. Notable 

areas with issues are the Pacific Northwest, Canada for most of the year, and Florida over 

the summer. These areas also have the most significant discrepancies with DB AOD, 

suggesting that future investigations should include additional data for the model to 

assess AOD better in these locations and/or develop separate regional/seasonal models 

that can specialize for AOD patterns specific to these locations. 

• A statistical evaluation of UNet 3+ gap-filled AOD with respect to ground-truth 

AERONET AOD retrievals shows a root mean square error (RMSE)~0.08 and a Pearson 

correlation (r)~0.84. This performance is comparable to DB, which scores an 

RMSE~0.09 and r~0.82 in the same evaluation. 

• The statistical evaluation metrics of this model are either better or on par with those of 

most preexisting AOD gap-filling methods (although most of these methods were 

developed specifically for parts of Asia) and roughly match the statistics of MERRA-2 

and DB against AERONET. This level of performance allows for generating a spatially 

complete daily AOD dataset over CONUS, even the semi-arid western U.S., which has 

historically been challenging for this task. 

• The computational requirements for the UNet 3+ gap-filling model are low compared to 

numerical and reanalysis models. Using an HPC node with 2 Nvidia A100 GPUs, it took 

~12 hours to train the model on 11 years of data to convergence and seconds to generate 

AOD estimations over CONUS for one day. 
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• These results support the feasibility of using DL to gap-fill AOD over CONUS. The 

advantages of using the DL approach are the flexibility of fusing diverse data from 

disparate sources, extracting high-level features from these data without imposing any 

assumptions on the problem, and the fast operational runtime. Leveraging these benefits 

can lead to a better understanding of aerosol distributions at a much finer temporal 

resolution than possible and enable future aerosol-focused health, economic, and weather 

studies. 

• Some potential challenges exist with the suggested approaches and, more generally, in 

estimating AOD and PM2.5. The first is the sampling bias that naturally arises from AOD 

retrievals, whether from ground- or satellite-based sensors. As no retrievals are 

performed in cloudy pixels, any model trained on this data is only aware of the dynamics 

of clear-sky AOD, and we cannot directly validate estimations over cloudy-sky areas (not 

even with ground truth AERONET, as AERONET stations cannot perform retrievals 

during cloudy conditions either). However, because this research aims to use AOD to 

estimate PM2.5, and hydrological effects tend to lower aerosol concentrations (i.e., via 

washout from precipitation), the methods can be justified as providing an upper-bound 

(acute) estimate for exposure. 

• A significant focus for future work is how best to incorporate new data from the novel 

Plankton Aerosol Clouds Ecosystem (PACE) mission. The at-launch (February 2024) 

application of DB to PACE Ocean Color Instrument (OCI) was to that of MODIS and 

VIIRS, except at finer spatial resolution; however, due to increased spectral coverage, it 

is anticipated that improved aerosol-type products (e.g., fine-resolution UV absorbing 

aerosol index, fine mode fraction) and an aerosol height product may become available. 
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Given these improvements, assimilating PACE data into the existing gap-filling model 

trained on current DB data would be ideal for improving model performance and 

ensuring the continuity of the NASA aerosol mission. 
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