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Abstract 

This dissertation addresses critical challenges in survival prediction for pediatric 

leukemia, particularly Acute Lymphoblastic Leukemia (ALL), by introducing novel 

predictive models that incorporate Bayesian principles and advanced machine learning and 

deep learning techniques. Recognizing the complexity and heterogeneity of leukemia, our 

research emphasizes the need for precise and individualized predictions that factor in the 

recurrence and survival probability, two pivotal aspects that significantly influence treatment 

outcomes in children and adolescents. In the first segment, we introduce a Bayesian survival 

model that diverges from traditional survival analysis by integrating full Bayesian inference, 

providing more accurate patient-specific survival predictions that account for model 

uncertainty. This allows for more confident decision-making in clinical settings. The second 

part of our work proposes a Transformer-based deep survival model that not only predicts 

the time to event but also employs Shapley Additive explanations (SHAP) for model 

interpretability, shedding light on how clinical variables influence predictions. Further, we 

propose a Bayesian Transformer-based survival model that combines the feature extraction 

capabilities of the Transformer encoder with a Bayesian Neural Network (BNN) layer. This 

model outputs recurrence probabilities under model uncertainty. The outputs from the 

Transformer encoder are sued for K-means clustering to evaluate model performance. Our 

work demonstrates strong potential in survival and recurrence prediction for children with 

leukemia, providing robust predictive survival models for clinicians to offer efficient and 

effective medical care to pediatric leukemia patients.  
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CHAPTER 1  

Introduction 

Childhood leukemia is a type of cancer that originates in the white blood cells within 

the bone marrow's hematopoietic stem cells. As the malignant cells proliferate, they impede 

the bone marrow's ability to produce numbers of normal white blood cells, red blood cells, 

and platelets. It is recognized that childhood leukemia represents the most prevalent form of 

cancer in children, constituting 31% of all pediatric cancers in the United States. Beyond the 

severe morbidity it causes, childhood leukemia is responsible for almost 39% of all deaths 

from cancer in children. Treatment in the healthcare setting refers to the medical or surgical 

management of a health condition. There is also a focus on early intervention, which 

encompasses the services and support provided to children who are at risk of developing 

such health conditions. While recent advances in treatment have improved survival rates for 

childhood leukemia, the formulation of early intervention strategies is less advanced. These 

strategies are crucial for averting life-threatening incidents and minimizing long-term 

consequences after treatment. Acute lymphoblastic leukemia (ALL) is a fast-moving 

malignancy of the white blood cells that causes the bone marrow to overproduce immature 

cells by upsetting the usual environment. These cells disrupt the immune system, increasing 

the risk of infection and potentially catastrophic events that often go untreated. Recent cancer 

statistics also show that ALL is the most common type of leukemia among children and 

adolescents, accounting for 76% of children and adolescents with leukemia in the United 

States. Among all potential clinical attributes of ALL, recurrence remains a significant factor 

that affects ALL-induced survival. Children with recurrence of ALL mostly have a lower 
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survival probability compared to others. Therefore, predicting the recurrence of ALL 

becomes urgent as healthcare practitioners can use prediction. Additionally, the mortality 

rate associated with childhood leukemia is not uniform across different demographics, often 

due to disparities in access to oncology care resources. Implementing a predictive strategy 

for preventive care could potentially enhance the survival rates for leukemia more 

substantially and bridge these gaps. Therefore, it is imperative to develop an accurate, cost-

effective predictive method that leverages commonly collected leukemia data within current 

monitoring systems. Such an approach would enable proactive healthcare for at-risk children 

and contribute to improving their chances of survival.  

In the medical field, survival analysis is employed to estimate the time until an event of 

interest, such as death or disease recurrence. It's viewed as a statistical method that assesses 

the likelihood of patients with certain conditions surviving within a specific timeframe. 

Survival analysis can determine these survival probabilities at individual time points based 

on the clinical characteristics of the patients. Many clinical practices have integrated survival 

analysis to forecast outcomes on a patient-by-patient basis over the past years. Yet, 

conventional techniques like Cox regression models presuppose certain survival time 

distributions, assumptions that are frequently invalid due to the extended treatment duration 

for diseases like Acute Lymphoblastic Leukemia (ALL), leading to models that do not 

perform optimally in practical scenarios. Furthermore, other survival prediction models, 

such as Support Vector Machines, Random Survival Forests, and deep learning-based neural 

networks, often require intensive computation, which can hinder their speed and efficiency. 

These methods also face limitations in acknowledging long-term temporal relationships and 

in assigning significance to inputs during prediction, which may diminish the accuracy and 
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interpretability of the survival predictions they generate. Most importantly, model 

uncertainty is mostly neglected. 

In this dissertation, we present three works to address the limitations of existing works. 

First, we propose a Bayesian survival model to make patient-specific survival predictions for 

children with leukemia. This paper proposes a Bayesian survival model that integrates a 

backbone survival model with Bayesian inference to take model uncertainty into account. 

Specifically, we estimate the posterior distribution of model parameters using a full Bayesian 

inference approach. By considering model uncertainty, the proposed Bayesian survival 

model can provide an accurate patient-specific survival prediction. Second, we develop a 

Transformer-based explainable deep survival model, aiming to predict the time to the 

occurrence of death for children and adolescents with ALL. Specifically, we first train the 

Transformer-based deep survival model by minimizing a loss function describing the 

discrepancy between predicted and actual survival status. Second, we use the well-trained 

model to predict the survival probability at a particular point in time. Lastly, we utilize 

Shapley Additive explanations (SHAP) to explain the proposed model and quantify the 

contributions of clinical variables to predictive results in global and local views. Third, we 

use the Transformer encoder to feature extracting and a BNN layer to output recurrence 

probabilities by taking model uncertainty into account. In addition, the outputs from the 

Transformer encoder are clustered into two groups through the K-means algorithm to assess 

model performance.  

The outline of this dissertation is as follows. Chapter 2 introduces a published paper 

named “Bayesian Inference for Survival Prediction for Children with Leukemia.” Chapter 3 

presents a work called “An Explainable Transformer-based Deep Survival Model for 
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Survival Prediction of Childhood Acute Lymphoblastic Leukemia.” Chapter 5 presents the 

study called “A Bayesian Transformer-based Deep Survival Model for Recurrence Prediction 

of Childhood Acute Lymphoblastic Leukemia.” Chapter 6 concludes the dissertation and 

provides future directions. 
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CHAPTER 2  

Bayesian Inference for Survival Prediction of Childhood 

Leukemia 

2.1 Introduction 

Childhood Leukemia is a malignancy of white blood cells that begins in the 

hematopoietic stem cells in the bone marrow. As the cancer cells increase, the bone marrow 

can no longer make adequate numbers of normal white blood cells, red blood cells, and 

platelets [1]. It is noted that childhood Leukemia is the most common cancer among children, 

accounting for 31% of childhood cancers in the United States [2]. In addition to the painful 

morbidity, the high mortality rate of childhood Leukemia also contributes to nearly 39% of 

cancer-induced childhood deaths [3]. In the medical domain, treatment is the action or way 

of treating a health condition medically or surgically. Additionally, the process of providing 

services and support to children at risk for the health condition is called early intervention. 

Nowadays, advancements in treatment have increased the survivability of childhood 

Leukemia. However, the development of early intervention strategies remains sketchy, and 

these strategies are essential to prevent occurrences of life-threatening events and long-term 

post-treatment sequelae [4]. Despite numerous efforts to improve Leukemia survival, there 

remains a subgroup of children dying from Leukemia. Moreover, childhood Leukemia 

mortality is unevenly distributed among groups due to cancer care resource disparity [5]. A 

predictive approach to providing preventive care to children may improve Leukemia survival 

to a greater extent and mitigate these disparities. Hence, there is an urgent need to conduct 

an accurate and low-cost predictive approach, preferably utilizing the existing monitoring 
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system with commonly monitored attributes for Leukemia, to provide children preventive 

care and improve survival rate.  

In the medical domain, survival analysis predicts the time to a certain event for 

downstream decision-making [6]. A broad of illnesses utilize survival analysis to make 

patient-specific survival predictions. For example, predicting the occurrence of Alzheimer’s 

using a deep learning model [7]. In the well-known Framingham Heart Study, a Cox 

regression model is used to predict the 30-year risk of cardiovascular disease [8]. There is 

also research discussing the racial differences in the survival of breast cancer [9]. The study 

illustrates that the risk of dying from breast cancer is greater among Black patients than 

among White patients by controlling certain variables (e.g., geographic site and age). 

Moreover, the results show that Black patients continue to demonstrate a slightly increased 

risk of death after adjusting for other variables (e.g., stage and treatment). Additionally, 

survival analysis is applied to identify key factors affecting the survival rate of children with 

primary malignant brain tumors [10]. These studies have demonstrated the importance of 

survival analysis in the medical domain as it provides predictive results to improve 

outcomes. However, as described above, these patient-specific predictions rely on a single 

model and focus on improving model performance. Nonetheless, an ensemble of models 

with approximately identical performance can exhibit wide variability in predictions. This is 

called model uncertainty. A patient-specific prediction is less accurate if it counts on a single 

model with model uncertainty ignored. Hence, it calls for a survival model taking model 

uncertainty into account to predict patient-specific survival probabilities of childhood 

Leukemia, thereby providing well-informed decision-making on prognosis and treatments. 

Bayesian inference is a powerful tool to capture model uncertainty in survival analysis. 
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Conventionally, most existing Bayesian survival models have prohibitively long run times, 

leading to significant computational costs. Moreover, inappropriate sampling methods result 

in highly correlated samples and are less efficient in sampling high-dimensional parameters. 

Most importantly, hand-actuated tunning is always required, which is also time-consuming. 

To overcome these hurdles, we develop a novel Bayesian survival model through full 

Bayesian inference. The implemented sampling method is relatively faster and more efficient 

in sampling high-dimensional distributions. Additionally, a specific sampler is induced, 

which is capable of tuning certain parameters automatically. Through the developed 

Bayesian survival model, we aim to predict the time to the occurrence of death for children 

with Leukemia. First, we develop a survival model to serve as the basis of Bayesian 

inference. Second, we place prior distributions over various model parameters and estimate 

their posterior distributions with full Bayesian inference. Third, we predict the survival 

probability at a certain time point by considering model uncertainty induced by posterior 

distribution. Experimental results show that the proposed Bayesian survival model is 

effective and efficient in predicting the survival probability of childhood Leukemia. This 

present investigation is conducive to providing preventive care and reducing Leukemia-

related life-threatening events. 

This paper is outlined as follows. Section 2.2 describes various existing survival models, 

model uncertainty applications, and Bayesian inference approaches. Section 2.3 presents the 

research methodology of Bayesian survival analysis. Section 2.4 evaluates and validates the 

proposed methodology with experimental results. Section 2.5 concludes the research and 

presents future research directions. 



8 

 

2.2 Research Background 

Existing survival analysis based on traditional statistics either fails to make patient-

specific predictions or make assumptions on the distribution of survival time. Moreover, 

these predictions rely on a single model while ignoring model uncertainty. To account for 

model uncertainty and make patient-specific survival predictions in survival modeling, a 

Bayesian inference approach is involved. By taking the idea from physical science, the 

proposed sampling method obtains the target distribution more accurately. Therefore, more 

accurate patient-specific survival prediction outcomes are obtained. 

2.2.1 Survival Modeling in Clinical Applications 

Survival analysis is a typical statistical methodology to model time-to-event data, 

aiming to predict the time to a certain event [11]. One primary interest in survival analysis 

is survival probability, which describes the probability that a patient survives beyond a 

certain time point [12]. By obtaining the survival probabilities of patients, healthcare 

practitioners could identify whether patients are at risk of a certain disease or not. Therefore, 

effective services and support could be provided to those patients who are at risk, thereby 

preventing occurrences of life-threatening events. In the medical domain, researchers 

estimate the survival probabilities of patients with certain diseases through various survival 

models. These models have been widely utilized and are of great importance in the medical 

domain, even though there remain challenges to address. 

Specific models in survival analysis can be classified into three categories based on 

traditional statistics, such as the no-parametric model, the parametric model, and the semi-

parametric model. First, a non-parametric model relies on mathematical inference without 

requiring assumptions on distributions of data. A representative is the Kaplan-Meier 
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estimator [13]. This method obtains survival probabilities at a certain time point solely 

through counting statistics. Although the Kaplan-Meier estimator provides a generalized 

view of survival probability, it is incapable of performing patient-specific predictions on 

survival probabilities. Moreover, it fails in multivariate analysis as it only identifies the effect 

of one clinical attribute. Second, a parametric model (e.g., accelerated failure time model) 

assumes that the survival time follows a particular distribution, such as Weibull and Gamma 

distributions [14]. Parametric models could provide suboptimal results as the distribution 

assumptions are violated. Third, another type of model is called the semi-parametric model, 

such as the cox proportional hazard (cox PH) regression model [15]. Cox PH regression 

model does not make assumptions on survival time distributions during the modeling period. 

Moreover, it could be utilized to make patient-specific survival predictions in multivariate 

analysis.  

In addition to the above limitations of survival models based on traditional statistics, 

predictions of all these three kinds of models rely on a single best model. “A best model” is 

defined as a model providing the most accurate results. In predictive analysis, model 

parameters optimization plays an important role in obtaining the best model. Some methods 

apply a series of significant tests (e.g., Log Rank test in Kaplan-Meier method). Others use 

certain estimation methods (e.g., Maximum Likelihood Estimation in Cox PH regression 

model). However, by selecting a single model, predictions are conditioned on the selected 

model, and model uncertainty is ignored. As mentioned in Section 1, model uncertainty is 

imperative to patient-specific predictions in survival analysis. A patient-specific prediction 

could be less accurate if the analysis counts on a single model and neglects model uncertainty. 

Therefore, it is essential to involve model uncertainty in patient-specific survival prediction.  
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2.2.2 Model Uncertainty in Predictive Modeling  

Model uncertainty can be seen as uncertainty about the true function that underlies the 

observed process [16]. It can be regarded as disagreement of the outcome predictive 

distributions conditioned on certain inputs [17]. In a certain model, given certain inputs and 

model parameters, the model function leads to a certain output. However, a distribution over 

model functions with certain inputs is induced by a distribution of model parameters. 

Different model functions contribute to different predictive distributions. Therefore, a 

distribution over model functions yields a distribution of predictive distributions.  

Historically, extensive research has explored the importance of inducing model 

uncertainty in modeling. For example, a previous study has captured model uncertainty in 

weather and climate prediction [18]. This study discusses the importance of multi-model 

ensembles. It illustrates that an ensemble system is more reliable than a single model. In 

addition, model uncertainty in risk analysis [19] discussed distinctions between classical and 

Bayesian approaches to risk models. In machine learning and deep learning field, model 

uncertainty is also discussed, such as quantifying model uncertainty in groundwater storage 

change and language modeling [20,21]. These works explain model uncertainty explicitly, 

contributing much to increasing the model’s accuracy. 

In the medical domain, one objective is to predict the patient-specific survival 

probability. Prediction outcomes vary by training the model multiple times as the variability 

comes from different sets of optimal model parameters. Accordingly, it is problematic for 

practitioners to offer well-informed decision-making on prognosis and treatment. However, 

such a challenge could be addressed by regarding model parameters as a distribution, which 

also considers model uncertainty and produces more precise patient-specific predictions. In 



11 

 

this paper, we propose a Bayesian survival model to predict patient-specific survival 

probabilities of children with Leukemia, accounting for model uncertainty through a full 

Bayesian inference approach (detailed in Section 2.3). 

2.2.3 Bayesian Inference and Posterior Sampling  

Bayesian inference is an essential statistic tool applying Bayes’ theorem to update the 

distribution of a hypothesis, where a hypothesis is also called a prior distribution [22]. In 

terms of predictive analysis, the intractable distribution of model parameters leads to model 

uncertainty. Bayesian inference aims to obtain a posterior distribution of model parameters 

by placing a prior distribution, accounting for model uncertainty. Accordingly, predictions 

are based on the posterior distribution of model parameters instead of a set of optimal model 

parameters, which captures model uncertainty and yields more precise outcomes. 

Sampling posterior is an essential part of Bayesian inference. Broadly speaking, there 

are two main streams of basic sampling methods. One is called independent sampling (e.g., 

rejection sampling), which requires few samples to obtain target distribution but meets 

challenges in scaling high dimension parameters. The other is called dependent sampling. A 

representative method of dependent sampling is Markov Chain Monte Carlo (MCMC), 

which comprises a class of algorithms to sample a posterior distribution [23]. Specifically, 

through MCMC, one obtains samples at various successive states of a constructed time-

discrete Markov Chain. The more states are included, the closer the distribution of the 

samples is to the posterior distribution. A posterior distribution is obtained when the MCMC 

converges to a stationary distribution. Here, a stationary distribution is defined as a 

distribution on the state space of the chain that is preserved by the transition function [24]. 

MCMC is a widely utilized sampling method as its ability to sample high-dimensional 
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probability distributions. For example, MCMC sampling methods have been applied to 

determine optimal models for earth science problems [25]. Additionally, existing research 

utilizes MCMC to address non-negative source separation [26]. These works have 

demonstrated the significance of MCMC sampling. 

Conventionally, there is a broad of methods being used to construct a Markov Chain. 

For example, existing research discusses variable selection in building a multiple regression 

model [27]. This study claims that key predictor subsets are those with high posterior 

probability. By using MCMC, computational burden is alleviated. In addition, another 

research constructs a Markov Chain to sample paths according to a given distribution of a 

network, which contributes much to route choice and guidance [28]. However, these MCMC 

sampling methods could produce highly correlated samples and are less efficient in sampling 

a high-dimensional distribution. Moreover, the random walk algorithm does not provide 

specific information on how to propose samples at a new state. Therefore, it is of great 

importance to propose a more efficient approach to sampling model parameters to address 

these challenges. In this paper, we investigate an alternative approach to sampling a joint 

distribution of induced auxiliary parameters and model parameters taking the idea from 

physical science. By acknowledging the derivatives of the auxiliary variables and model 

parameters with respect to time, the proposed method is capable of informing specific 

directions to the target joint distribution. Once the values of these parameters are stable, 

auxiliary variables are marginalized from the joint distribution to obtain the target 

distribution of the model parameters. The proposed method takes advantage of scaling better 

to a high-dimensional distribution. Moreover, the high acceptance rate of new samples 

secures the efficiency of the sampling process. Most importantly, inducing auxiliary 
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variables and using the information in the gradients better control the sampling process, 

thereby directing toward the target distribution more accurately.  

2.3 Research Methodology 

As shown in Figure 1, this paper proposes a Bayesian survival model which integrates 

a backbone survival model with Bayesian inference to take model uncertainty into account. 

Specifically, we estimate the posterior distribution of model parameters using a full Bayesian 

inference approach. By considering model uncertainty, the proposed Bayesian survival 

model can provide an accurate patient-specific survival prediction.  

 
Figure 1. Flowchart of research methodology 

2.3.1 Backbone Survival Model for Bayesian Inference 

In survival analysis, a survival model provides a complete picture of longitudinal 

survival, which is generally formulated as 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡|𝒛)      (2.1) 

where  𝑇 is a random variable that represents survival time, 𝑡 denotes a certain time point, 

𝒛 = (𝑧1, … , 𝑧𝜏) is a set of 𝜏 variables (e.g., race, gender, primary site, and chemotherapy), 

and 𝑆(𝑡) outputs the survival probability at a certain time point 𝑡. 

A survival model can be both parametric (e.g., AFT model) and semiparametric (e.g., 
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cox PH regression). Specifically, in cox PH regression, a hazard is defined as the 

instantaneous rate of occurrence of death at time 𝑡, and it is formulated as 

ℎ(𝑡|𝒛) = ℎ0(𝑡)𝑒𝜷𝒛      (2.2) 

where 𝜷 = (𝛽1, … , 𝛽𝜏) denotes a set of model parameters and  ℎ0(𝑡) is a baseline hazard 

function. Further, a cumulative hazard function is defined based on hazard 

𝐻(𝑡) = ∫ ℎ(𝑡|𝒛)𝑑𝑢
𝑡

𝑢=0
     (2.3) 

In the survival analysis, the following equation holds 

𝑆(𝑡) = 𝑒−𝐻(𝑡|𝒛)      (2.4) 

In this paper, we use M-spline distribution as the baseline hazard function [29], because it 

does not presume a distribution of times that events occur [30]. Accordingly, the hazard is 

given by 

ℎ(𝑡|𝒛) = ∑ 𝜖𝑛𝑀𝑛(𝑡, 𝒌, 𝑜)𝑒𝜷𝒛𝑁
𝑛=1     (2.5) 

where 𝑛 denotes the index of M-spline basis function, 𝑛 = 1, … , 𝑁, 𝑀𝑛 represents the 𝑛th 

basis function, 𝒌  is a vector of knots, 𝑜  denotes the order of polynomials in M-spline 

function, and 𝜖𝑛 is the parameter of 𝑛th basis function, ∑ 𝜖𝑛
𝑁
𝑛=1 = 1. 

2.3.2 Accounting for Model Uncertainty with a Bayesian Framework 

Model uncertainty is the uncertainty regarding the true underlying function. State-of-

the-art survival predictions often count on a single best model or average across an ensemble 

of models. However, models in an ensemble with nearly equivalent performance accuracy 

can lead to disagreement on output distribution for a given patient, which further results in 

disagreement regarding decisions made based on model outputs [31]. Decision-making 

based on uncertain model outputs can cause adverse consequences. Therefore, it is critical 
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to account for model uncertainty in survival predictions.  

Provided the backbone survival model, model uncertainty can be represented with a 

distribution of learnable model parameters, e.g., regression coefficients and auxiliary 

parameters [32], which are collectively denoted as 𝜽. This is because the distribution of 

model parameters induces the distribution of models [33,34]. The proposed Bayesian 

framework captures the model uncertainty through three steps: (1) we place a prior 

distribution 𝑝(𝜽) over the model parameter set 𝜽; (2) we estimate the posterior distribution 

of model parameters 𝑝(𝜽|𝑫) with a full Bayesian inference approach (detailed in Section 

2.3.3); (3) and we predict the patient-specific survival probability accounting for model 

uncertainty as 

𝑝(𝑆𝑖(𝑡)|𝒛𝑖 , 𝑫) = ∫ 𝑝(𝑆𝑖(𝑡)|𝒛𝑖 , 𝜽) 𝑝(𝜽|𝑫)𝑑𝜽   (2.6) 

where 𝑫 denotes the data, and 𝑆𝑖(𝑡) is the survival probability of 𝑖th patient. 

2.3.3 Estimating Posterior Distribution using Full Bayesian Inference 

HMC is a full Bayesian inference approach [35,36], which obtains the posterior 

distribution through a Hamiltonian energy function 

   𝐻(𝜽, 𝝆) = 𝑉(𝜽) + 𝑈(𝝆|𝜽)             (2.7) 

where 𝑉(𝜽) represents a potential energy function of model parameters, 𝑈(𝝆|𝜽) is a kinetic 

function of model parameters 𝜽 and auxiliary momentum variables 𝝆 , 

𝝆~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝑴), and 𝑴 is the covariance matrix. Accordingly, equation (7) can be 

written in the form 

𝐻(𝜽, 𝝆) =  𝑉(𝜽) +
1

2
𝝆𝑇𝑴−1𝝆          (2.8) 

To estimate the posterior distribution of 𝜽, at each time step 𝑡, we draw samples of 𝝆 and 𝜽 
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from the joint system 𝐻(𝜽, 𝝆) . According to Hamiltonian equations, the following 

relationship between 𝝆, 𝜽, and 𝑡 holds 

𝑑𝜽

𝑑𝑡
=

𝜕𝐻

𝜕𝝆
=  𝑴−1𝝆      (2.9) 

  
𝑑𝝆

𝑑𝑡
= −

𝜕𝐻

𝜕𝜽
= −

𝜕𝑉

𝜕𝜽
      (2.10) 

Therefore, at each time step, we can approximate values of 𝝆 and 𝜽 as 

𝝆𝑡+
𝛾

2
← 𝝆𝑡 −

𝛾

2

𝜕𝑉

𝜕𝜽
      (2.11) 

     𝜽𝑡+𝛾 ← 𝜽𝑡 + 𝛾𝑴−1𝝆𝑡+
𝛾

2
                   (2.12) 

 𝝆𝑡+𝛾 ← 𝝆𝑡+
𝛾

2
−

𝛾

2

𝜕𝑉

𝜕𝜽
         (2.13) 

where 𝛾 is a small increment in time towards the next time step [37]. A No-U-Turn Sampler 

is introduced here to optimize the incremental value of 𝛾 and the number of increments at 

each time step [38]. At the end of each time step, we use Metropolis acceptance to determine 

whether values of 𝝆 and 𝜽 are acceptable. If so, we proceed to the next time step with 

updated values of 𝝆 and 𝜽. If not, we restart the approximation at the current time step [39]. 

Once values of 𝝆 and 𝜽 stabilize, we obtain the posterior distribution of 𝜽 by marginalizing 

out auxiliary momentum variables 𝝆. 

2.4 Experimental Results 

In the experiment, we predict the survival probability of Leukemia-related death using 

the childhood Leukemia dataset in SEER database. To evaluate the predictive performance, 

C-index is introduced and computes the ratio of the number of concordant pairs to the number 

of comparable pairs.  Also, standardized survival probabilities of the censored group and the 

deceased group are compared to further validate the proposed model. With the proposed 
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model, we also investigate the effects of clinical attributes on the mortality of childhood 

Leukemia. These significant experimental results indicate the importance in prognosis and 

decision-making on treatment of childhood Leukemia. 

2.4.1 Data Description  

Table 1. Explanation of variables in childhood Leukemia dataset. 

Variable Description 

Age Identifies the age group of the patient at diagnosis 

Gender Identifies the gender of the patient at diagnosis 

Race Identifies the race information of the patient 

Site Identifies the subtype of Leukemia 

Grade Indicates cell types and morphology 

Radiation 

therapy 

Identifies the different types of radiation therapy, including those who 

did not receive radiation therapy 

Chemotherapy Identifies whether the patient received chemotherapy 

COD Identifies the cause of death 

MFDT Represents months period from diagnosis to treatment 

Tumor Represents the number of tumors that occurred for a patient 

Time Represents the survival time 

Status Identifies whether the patient is deceased or censored 

 

The database used in this research is Incidence-SEER Research Plus Data, 12 

Registries, Nov 2021 Sub (2000-2019) [40], supported by the National Cancer Institute. In 

this research, we are particularly interested in the childhood Leukemia dataset (ages 0-19 

years). In the dataset, children below nine years old comprise 61% of all childhood Leukemia 

patients. In addition, lymphocytic Leukemia is the most common type of Leukemia among 

children who are less than 19 years old, accounting for 76% of all Leukemia patients. The 

childhood Leukemia dataset consists of 17,539 children with Leukemia. Demographic and 

clinical variables in the dataset are used for Bayesian survival modeling, including age, 
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gender, race, primary site, grade, radiation therapy, chemotherapy, months from diagnosis 

to treatment (MFDT), number of tumors, cause of death (COD), survival time, and status. 

Explanations of these variables are summarized in Table 1. 

2.4.2 Predictive Performance Evaluation of Bayesian Survival Model 

In the experiment, we use C-index as the performance metric to evaluate the predictive 

performance of the proposed model [41,42]. C-index is defined as the number of concordant 

pairs divided by the number of comparable pairs which is formulated as 

𝐶 =
∑ 𝐼(𝑇𝑖 >𝑇𝑗 )∗𝐼(𝜂𝑗>𝜂𝑖)∗𝑑𝑗𝑖,𝑗

∑ 𝐼(𝑇𝑖 >𝑇𝑗 )∗𝑖,𝑗 𝑑𝑗
        (2.14) 

where (𝑖, 𝑗) refers to indices of a pair of patients, 𝜂𝑖 and 𝜂𝑗 are risk scores for patients 𝑖 and 

𝑗, 𝑑𝑗 is a binary variable indicating whether a patient is deceased or not, 𝑑𝑗 = 0 if the patient 

is censored, otherwise 𝑑𝑗 = 1, and 𝑇𝑖 and 𝑇𝑗 are survival times of patient 𝑖 and 𝑗 given in the 

real data. However, there are some cases that are not comparable. These include cases (1) 

when patients 𝑖 and 𝑗 are both censored; (2) and when the observed survival time of censored 

patient 𝑗 is shorter than the deceased patient 𝑖 (as we cannot determine who actually survives 

longer in this case). Here, we introduce 𝑑𝑗 to eliminate these incomparable pairs as when 

patient 𝑗 is censored, 𝑑𝑗 = 0, and thus equation (14) does not take these cases into account. 

Values of C-index range from zero to one. For model evaluation, a higher value of C-index 

indicates stronger model performance and higher predictive accuracy. A value of 0.5 means 

that the model is no better than random chance while values over 0.8 indicate the model is 

of high precision [43]. C-index of the proposed Bayesian survival model is 0.93, which 

indicates the effectiveness and accuracy of the proposed model. Further, the model is 

significant for healthcare practitioners to better inform prognosis and treatment of childhood 
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Leukemia. 

2.4.3 Comparison of Standardized Survival Probabilities – Censored Group vs Deceased 

Group 

To further validate the proposed model, we compare the standardized survival 

probabilities of different groups which is formulated as 

𝑝( 𝑆∗(𝑡)|𝑫) =
1

𝐿
∑ 𝑝(𝑆𝑖(𝑡)|𝒛𝒊, 𝑫)𝐿

𝑙=1        (2.15) 

where 𝐿 is the number of patients in a particular group (censored or deceased) and 𝑆∗(𝑡) is 

the standardized survival probability of the corresponding group. The standardized survival 

probability assists us to investigate the overall survival probabilities of different groups of 

patients.  

 

Figure 2. Patient-specific survival probability predicted by Bayesian survival model. Red line shows 

the standardized survival probability of the censored group, green line shows the standardized 

survival probability of deceased group, and gray line gives the individual survival probability of all 

patients changing with respect to time. 

As shown in Figure 2, the green line represents the standardized survival probability 

of censored group, while the red line is the standardized survival probability of the deceased 

group. Each gray line gives the patient-specific survival prediction changing with respect to 
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time. However, the standardized survival probability of the censored group is consistently 

higher than the probability of the deceased group, suggesting that the proposed model is 

robust to predict survival probability accurately. 

2.4.4 Investigating Effects of Clinical Attributes on Mortality of Childhood Leukemia 

In the experiment, we also investigate the effects of certain clinical attributes, e.g., 

primary site, chemotherapy, and radiation therapy, on standardized survival probabilities of 

children with Leukemia. Each of these variables is selected due to its high hazard ratio 

referred to as 

𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜 = 𝑒𝛽𝜏    (2.16) 

 

Figure 3. Effects of clinical parameters on survival probability of children with leukemia: (a) 

Effects of different age groups; (b) Effects of different types of leukemia; (c) Effects of radiation 

therapy; (d) Effects of chemotherapy. 
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The hazard ratio of variable 𝑧𝜏 indicates the effect of its unit increase on the survival 

probability, assuming that all the other variables hold constant. Among patients with 

Leukemia, those who are less than one year old and are greater than ten years old are regarded 

as high-risk patients. High-risk group patients are more likely to die and have lower 

standardized survival probabilities. As shown in Figure 3 (a), standardized survival 

probabilities of patients from different age groups are presented. Specifically, newborn 

children (children who are less than one year old) with Leukemia have the lowest survival 

probabilities among all age groups. Moreover, children over ten years old have lower 

survival probabilities than those who are less than ten years old and greater than one year 

old. This result verifies the empirical Leukemia-related facts. Figure 3 (b) shows that 

children with lymphocytic Leukemia have the highest standardized survival probability. On 

the other hand, children with myeloid, monocytic, and other types of Leukemia have lower 

standardized survival probabilities than the lymphocytic type. Furthermore, different types 

of therapy methods (e.g., chemotherapy and radiation therapy) also influence the occurrence 

of decease. As shown in Figure 3 (c), the group without radiation therapy has the highest 

standardized survival probability. This is probably because treatments in pediatric Leukemia 

are tailored to the risk stratification at diagnosis. Patients in the low-risk group are less severe 

than the other groups, which has led to a less intensity of radiation therapy. Furthermore, 

another interesting finding is that those patients who received beam radiation therapy possess 

the second highest standardized survival probability. Figure 3 (d) demonstrates the effect of 

chemotherapy on mortality of childhood Leukemia. Children who received chemotherapy 

possess a higher standardized survival probability than those without chemotherapy. 

Accordingly, chemotherapy does increase the standardized survival probability of children 
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with Leukemia. In conclusion, the proposed model can help identify the effects of various 

attributes on survivals of childhood Leukemia patients. This is conducive to reducing 

Leukemia-related death and providing appropriate interventions to life-threatening events in 

a timely manner, thereby positively influencing cancer care. 

2.5 Conclusions 

Childhood Leukemia is the most common cancer among children. Its serious morbidity 

and mortality rate motivate researchers to investigate the occurrence of Leukemia-related 

death, assisting healthcare practitioners to make a better decision upon timely prognosis and 

treatment. In the medical domain, survival analysis is widely applied in a broad of illnesses. 

However, most previous work on survival analysis relies more on a single model with high 

predictive precision, which fails to consider model uncertainty. To fill this gap, we develop 

a Bayesian survival model to predict the occurrence of death for children with Leukemia by 

taking model uncertainty into account. Specifically, the proposed model integrates a 

backbone survival model with Bayesian inference. Then, we estimate the posterior 

distribution of model parameters using a full Bayesian inference approach. By considering 

model uncertainty, the proposed Bayesian survival model can provide patient-specific 

predictions efficiently and effectively. 

Experimental results show that C-index of the Bayesian survival model is 0.93, 

suggesting the proposed model is of high predictive precision. Moreover, the discrepancy in 

standardized survival probabilities between the censored group and the deceased group 

further reveals the predictive accuracy of the proposed model. The Bayesian survival model 

can also identify the effects of clinical attributes (e.g., age, chemotherapy, radiation therapy, 

and types of Leukemia) on Leukemia-related death, which is conducive to reducing the 
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Leukemia-related death and providing appropriate interventions to life-threatening events in 

a timely manner. This research is of great importance because: (1) Clinicians can better 

inform prognosis and treatments of childhood Leukemia based on accurate prediction. (2) 

The effects of clinical attributes can be tracked with the proposed model, thereby helping 

with decision-making on interventions. Further research could study multistate outcomes of 

childhood Leukemia rather than binary outcomes, i.e., censored and deceased. As more 

patients are added to the SEER database, deep learning models (e.g., Long short-term 

memory network) can be used for the model development due to their great power to deal 

with nonlinear dynamics that are inherent in the electronic health record, thereby better 

assisting medical decision-making.  
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CHAPTER 3  

Explainable Transformer-based Deep Survival Model for 

Survival Prediction of Childhood Acute Lymphoblastic 

Leukemia  

3.1 Introduction 

Acute lymphoblastic leukemia (ALL) is a type of cancer that affects the white blood cells, 

particularly the lymphocytes. The disease is characterized by the overproduction of abnormal 

and immature lymphocytes in the bone marrow [44]. These abnormal lymphocytes are unable 

to function properly or mature into healthy blood cells, resulting in a decrease in normal 

white blood cells, red blood cells, and platelets [45]. The decrease in these blood cells can 

lead to disruptions in the immune system, which significantly raises the risks of infection and 

life-threatening events, often fatal without timely intervention. Most recent statistics in 2024 

reveal that leukemia is the most common cancer among children (ages 0 to 14 years) and 

adolescents (ages 15 to 19 years), accounting for 41% of all pediatric and adolescent cancers 

in the United States. Moreover, ALL is the most prevalent type of leukemia in this 

demographic, representing 76% of children and adolescents diagnosed with leukemia in the 

United States [3]. Despite advancements in diagnosis and treatment, ALL remains a 

significant health concern, as evidenced by a growing trend in the rate of new cases, which 

has escalated from 1.5% in 1992 to 1.7% per 100,000 individuals in 2020 [46]. One critical 

challenge lies in the lack of an accurate and efficient predictive approach to forecasting ALL 

survival for pediatric patients, leading to delays in monitoring and intervention. Addressing 
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this challenge is of paramount importance to improve survival rates among ALL patients in 

childhood. 

In healthcare, survival analysis aims to predict the time until a particular health-related 

event occurs. It is a statistical approach that can generate survival probabilities over a given 

time frame for patients diagnosed with a specific disease [47]. In recent decades, various 

survival models have been widely adopted to make survival predictions [48]. For example, a 

semi-parametric survival model, the Cox proportional hazard (PH) regression model, has 

been widely used to predict survival probabilities [49]. This model assumes that the hazard 

function, which represents the instantaneous event occurrence, is proportional across 

different levels of covariates. This also indicates that the hazard of each covariate remains 

constant over time. However, this assumption is often violated in real-world situations [50]. 

For example, a treatment may have a different impact on survival probabilities in the short 

term compared to the long term, indicating time-dependent effects of covariates on survival. 

Other survival models, such as Support Vector Machines (SVM), Random Survival Forests, 

and deep neural networks (DNNs), demonstrate accurate predictive performance but often 

face time-consuming computational processes, primarily due to limitations in parallel 

computing capabilities [51,52]. Moreover, these models are limited in capturing the inherent 

long-term dependencies within the time-to-event data and prioritizing specific informative 

input segments in the predictive process, resulting in less accurate and interpretable 

predictions. 

To address this challenge, the Transformer has emerged as a solution. Vaswani et al. 

proposed the Transformer architecture in 2017, initially used as a foundation for various 

natural language processing models [53]. Transformers rely on self-attention and multi-head 
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attention mechanisms to process sequential data. The self-attention mechanism calculates 

attention weights, which helps the transformer effectively process sequential data and make 

contextually informed decisions. This mechanism prioritizes important tokens by assigning 

higher attention weights while assigning lower weights to less important ones [54]. On the 

other hand, the multi-head attention mechanism enables the model to focus on various parts 

of input data simultaneously. This mechanism splits the input embedding into multiple 

parallel heads, with each head independently calculating attention weights. The use of 

multiple attention heads allows the transformer to capture diverse representations within the 

input data, which in turn improves the model performance [55]. In recent years, Transformers 

have been applied in multiple domains due to their flexibility and robust performance, 

including speech recognition [56], language modeling [57], and text classification [58]. 

Compared with other deep learning models, such as recurrent neural networks (RNNs) [59], 

which process sequences step by step, Transformers leverage a parallel computational 

process, which significantly enhances computational efficiency and allows Transformers to 

digest long-term dependencies more effectively. Therefore, in this paper, we develop an 

explainable Transformer-based deep survival model to predict the time to death for children 

and adolescents diagnosed with ALL. Specifically, we first train the Transformer-based deep 

survival model by minimizing a loss function that measures the discrepancy between 

predicted and actual survival status. Second, we predict the survival probability at a particular 

point in time with the well-trained model. Third, we explain the survival model and evaluate 

the contributions of clinical attributes to predictions with Shapley Additive explanations 

(SHAP) from both global and local perspectives [60].  
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The outline of this paper is as follows. Section 3.2 discusses existing survival models and 

deep learning applications in the field of survival analysis. Section 3.3 presents the research 

methodology of the proposed explainable Transformer-based deep survival model. Section 

3.4 evaluates the proposed methodology. Section 3.5 concludes the research. 

3.2 Research Background 

Conventional survival modeling relies on assumptions of event time distributions and 

the estimation of model parameters. With the advancements in machine learning and deep 

learning, survival analysis has become more flexible and capable of capturing nonlinear 

dynamics, thus addressing complex real-world problems effectively. Further, by enhancing 

the transparency and explainability of the survival models, SHAP improves the quality of 

decisions made in clinical practice. 

 3.2.1 Statistical Survival Modeling 

Survival models based on traditional statistical methods have been commonly applied 

in the medical domain. Conventionally, statistical survival models are typically categorized 

into non-parametric, parametric, and semi-parametric models. These models were developed 

primarily to deal with the time-to-event data for the prediction of survival probability, which 

refers to the probability of a patient surviving beyond a particular time threshold. By 

understanding a patient’s survival probability over time, clinicians can provide timely 

interventions, thereby reducing the occurrences of disease-induced deaths.  

Non-parametric models provide an overview of the disease without explicitly 

identifying relationships between response and predictor variables. Non-parametric methods 

include the Nelson-Aalen estimator [61], the Kaplan-Meier estimator [13], and the life-table 

method [62]. These methods directly estimate the overall hazard or survival function for a 
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group of patients. On the other hand, parametric models estimate model parameters by 

assuming prior information about event time distributions, such as exponential, gamma, 

Weibull, lognormal, and log-logistic distributions [63]. Parametric survival models, 

including the accelerated failure time (AFT) model [14], penalized regression [64], and the 

Buckley-James model [65], can provide patient-specific survival predictions and 

mathematically track relationships among variables. Nowadays, most researchers prefer 

semi-parametric methods because of their effectiveness and interpretability, such as the Cox 

PH regression model [66]. The Cox PH does not make prior assumptions about event time 

distributions. Instead, it estimates a specific hazard function using a pre-assumed baseline 

survival function.  

Despite the longstanding presence of statistical survival models, they often face 

challenges related to counting statistics and pre-assumptions, which are often violated in 

real-world clinical settings. Moreover, existing statistical survival models overlook 

nonlinear relationships among variables. As a result, these survival models fail to generalize 

effectively in complex scenarios, leading to unrealistic predictive outcomes.  

3.2.2 Machine Learning and Deep Learning in Survival Analysis 

Machine learning-based survival models have been broadly applied in the medical 

domain due to their ability to digest complex variable relationships within medical records 

[67]. Prior to the rapid advancement of deep learning in recent years, ensemble approaches 

were frequently utilized for nonlinear machine learning [68-70]. However, their ability to 

handle nonlinear data usually falls short in addressing complex variable structures compared 

to deep learning-based survival models.  
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In contrast, deep learning models can handle complex data structures by quickly 

expanding with additional layers [71]. Specifically, DNNs exhibit a strong capability to scale 

with high-dimensional and large-sized datasets thanks to their unique network structure and 

training approaches. As a result, DNNs have become a popular choice in survival modeling 

within the medical domain. For example, The DeepSurv model [72], which employs a 

feedforward neural network, has demonstrated promising outcomes in enhancing early 

intervention and personalized treatment planning through improved survival prediction. 

However, the problem of generalization remains under-addressed. Subsequently, the 

DeepHit survival model was proposed to model time-to-event data without making 

distribution assumptions [73]. DeepHit combines recurrent neural networks and multi-layer 

perceptron (MLP) to capture the temporal dynamics of clinical data without imposing 

assumptions. However, DeepHit’s learning capability can be limited as it relies solely on a 

simple MLP. To this end, in recent years, researchers have been exploring variations of deep 

learning models to address these challenges. 

3.2.3 Enhancing Model Interpretability in Real-world Clinical Applications 

Explaining the predictive outcomes of black-box models like machine learning and deep 

learning models is becoming increasingly important. SHAP, a model-agnostic technique 

grounded in game theory, can enhance model interpretability by revealing how each feature 

affects a model’s predictive results. Specifically, SHAP calculates Shapley values for each 

instance and each feature, illustrating the contributions of different variables to the 

predictions. Positive Shapley values indicate that the inclusion of the variable increases the 

prediction beyond the average prediction of all instances, while negative values suggest that 

the variable decreases the prediction below the average prediction. Unlike other 
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interpretability-enhancing measures (e.g., Feature importance), Shapley values identify the 

most influential features for a prediction and the direction of their influence (e.g., raising or 

lowering the forecast). 

SHAP has been extensively used in various domains to explain black-box models. For 

example, researchers have combined deep neural networks with SHAP to forecast sales [74]. 

In addition, researchers use RSF to analyze failure mode and effects in the manufacturing 

domain and further investigate feature importance with SHAP [75]. Moreover, machine 

learning and deep learning methods, such as SVM, Long-short term memory (LSTM), and 

XGBoost, are combined with SHAP to offer more insightful perspectives in survival 

modeling explanation [76]. These works have demonstrated the prevalence of using SHAP 

for enhancing model interpretability, providing practitioners with additional information for 

informed decision-making. 

3.3 Research Methodology 

 

Figure 4. Flowchart of Research Methodology 

This section presents the proposed explainable Transformer-based deep survival 

model to predict survival for children and adolescents diagnosed with ALL. As shown in 
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Figure 4, we first preprocess the raw ALL dataset, which is obtained from the University of 

Oklahoma (OU) Health Cancer Registry, OU Health electronic health records (EHR), and 

the Oklahoma Central Cancer Registry. Second, we develop a Transformer-based deep 

survival model to predict patient-specific survival probabilities. Third, we explain the black-

box model and quantify the contribution of each feature to predictive outcomes with SHAP. 

3.3.1 Data Preprocessing and Problem Formulation in Survival Prediction 

The dataset used in this paper is sourced from the OU Health Cancer Registry, OU 

Health electronic health records (EHR), and the Oklahoma Central Cancer Registry. This 

dataset involves 275 children and adolescents diagnosed with ALL from 2005 to 2019 [77]. 

The clinical variables selected for survival modeling include gender, histology (following 

the International Classification of Childhood Cancer 3rd Edition [78]), age at diagnosis 

(ranging from 0 to 19 years of age), recurrence status (defined as relapse or recurrence after 

complete remission following initial induction therapy), race/ethnicity (American Indian, 

Hispanic, Non-Hispanic (NH) Black, NH White, and NH Asian/Pacific Islander), prognosis 

status (based on post-induction prognosis), diagnosis year, insurance/payer type (Indian 

Health Service, Insured, Medicaid, Uninsured, Unknown), distance to care (in miles) from 

address at diagnosis (DCAD) to the Oklahoma Children’s Hospital OU Health, area 

deprivation index using national rankings based on address at diagnosis (ADAD) [79], 

distance to care from the current address (DCCA) in the EHR to the Oklahoma Children’s 

Hospital OU Health, area deprivation index based on current address (ADCA), overall 

survival time (OST) calculated from date of diagnosis to death or end of follow-up (October 

20, 2020) (whichever occurred first), and event status (deceased or censored). Detailed 

descriptions of these variables are provided in Table 2. 
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Table 2. Descriptions of Variables 

Variable Description 

Age at Diagnosis Identifies the age of the patient at diagnosis 

Gender Identifies the gender of the patient at diagnosis 

Race/Ethnicity Identifies the race and ethnicity information of the patient 

Recurrence Status 
Indicates relapse or recurrence that occurred after complete 

remission following initial induction therapy 

Histology Indicates ALL subtypes 

Prognosis Status 
Indicates the prognosis status based on the post-induction 

assessment 

Diagnosis Year Identifies the year of diagnosis 

Insurance Type/Payer Indicates the insurance type or primary payer of a patient 

DCAD 
Represents the distance to care (in miles) from address at 

diagnosis to the Oklahoma Children’s Hospital OU Health 

ADAD 
Represents the area deprivation index using national rankings 

based on address at diagnosis 

DCCA 
Represents the distance to care from the current address in the 

EHR to the Oklahoma Children’s Hospital OU Health 

ADCA 
Represents the area deprivation index based on the current 

address 

OST 
Represents the overall survival time calculated from the date 

of diagnosis to death or end of follow-up 

Event Status Identifies whether the patient is deceased or censored 

 

We denote the entire dataset as 𝒛 = {𝒙, 𝑦, 𝑇}𝑝=1
𝑁 , where 𝑝 represents the patient index, 

𝑁 is the total number of patients recorded in the dataset, 𝒙 = (𝑥1, … , 𝑥𝑙) denotes a set of 𝑙 

predictor variables, 𝑦 ∈ (0,1) is a binary response variable indicating a patient’s survival 

status (i.e., zero indicates censored status, while one represents deceased status), and 𝑇 is a 

random variable that represents the OST. Further, we perform one-hot encoding for 

categorical variables and regularize continuous variables to enhance the learning ability of 

the model. We divide the dataset into three segments: 60% of the data serves as a training 
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set for model development, 20% as a testing set, and the remaining 20% as a validation set 

for performance evaluation. The training process stops when there are no further 

improvements in the performance of the validation set.  

In this paper, the survival function, defined as the probability that a patient survives 

beyond a particular time point, is formulated as 

𝑆(𝑡𝑘|𝒙, 𝜽) = 𝑃(𝑇 > 𝑡𝑘|𝒙, 𝜽)     (3.1) 

where 𝑡𝑘 ∈ {𝑡0, … , 𝑡𝐾} denotes a particular time point, 𝑡𝐾  is the maximum survival time 

found in OST, 𝜽 represents the model parameters of the Transformer-based deep survival 

model, 𝒙 is a set of variables, and 𝑆(𝑡𝑘|𝒙, 𝜽) represents the survival probability at 𝑡𝑘.  

In addition, a hazard function refers to the conditional probability that the patient 

experiences an event at 𝑡𝑘 given they remain event-free before 𝑡𝑘, is formulated as  

ℎ(𝑡𝑘|𝒙, 𝜽) = 𝑃(𝑇 = 𝑡𝑘|𝑇 > 𝑡𝑘−1, 𝒙, 𝜽)    (3.2) 

By applying Bayes’ Theorem, we can express the survival function as  

𝑆(𝑡𝑘|𝒙, 𝜽) = 𝑃(𝑇 > 𝑡𝑘|𝑇 > 𝑡𝑘−1, 𝒙, 𝜽) 𝑃(𝑇 > 𝑡𝑘−1|𝒙, 𝜽)   (3.3) 

where the first term on the right-hand side is equivalent to 1 − 𝑃(𝑇 = 𝑡𝑘|𝑇 > 𝑡𝑘−1, 𝒙, 𝜽). 

Therefore, combining Equations (3.2) and (3.3), the survival function can be defined as 

𝑆(𝑡𝑘|𝒙, 𝜽) = (1 − ℎ(𝑡𝑘|𝒙, 𝜽))𝑆(𝑡𝑘−1|𝒙, 𝜽)   (3.4) 

By recursively expanding Equation (3.4), we can derive the formula for the survival 

function as 

𝑆(𝑡𝑘|𝒙, 𝜽) = ∏ (1 − ℎ(𝑡𝑘|𝒙, 𝜽))
𝑡𝑘
𝑡0

    (3.5) 

ℎ(𝑡0|𝒙, 𝜽) = 𝑃(𝑇 = 𝑡0)     (3.6) 

According to Equation (3.5), we can calculate the survival function by cumulatively 
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multiplying the hazard function. Therefore, in our proposed model (detailed in 3.3.2), we 

first output the hazard function at each time point and then use the cumulative multiplication 

described in Equation (3.5) to derive the desired survival function. This process ensures the 

survival probability decreases monotonically over time, reflecting real-world scenarios 

where the absence of effective treatments leads to a non-increasing survival function. 

3.3.2 Transformer-based Deep Survival Model for Childhood ALL 

 
Figure 5. The architecture of the Transformer-based Deep Survival Model 

As shown in Figure 5, the architecture of the proposed Transformer-based deep 

survival model consists of four parts: (1) An embedding layer for feature extraction, mapping 

the sparse feature space into continuous and fixed vectors; (2) A Transformer encoder with 

several encoder blocks to perform layer normalization, multi-head attention mechanism, 

dropout application, and residual connection; (3) A dense layer to scale the output from the 

Transformer encoder to a fixed dimension, consistent with the maximum event time in the 

data set; (4) An output layer with sigmoid function to estimate the hazard functions at 

different time points. The input features are first fed into an embedding layer individually. 

Then, the resulting outputs from the embedding layer are concatenated and used as input for 



35 

 

the Transformer encoder. The output obtained from the Transformer encoder is then 

channeled into a dense layer and reshaped to match the maximum event time dimension. 

Finally, an output layer employing a sigmoid function generates the target hazard functions.  

Table 3. Patient Examples with Survival Status 

Patient 

Index 

(Time, 

Status) 
Survival Status over Time 

𝑝 (𝑇𝑝, 𝑦𝑝) 𝑒𝑡0

𝑝
 𝑒𝑡1

𝑝
 𝑒𝑡2

𝑝
 𝑒𝑡3

𝑝
 

1 (1,0) 1 0 0 0 

2 (2,0) 1 1 0 0 

3 (170,0) 1 1 1 1 

4 (174,1) 1 1 1 1 

 

In this paper, we propose a loss function tailored for predicting survival outcomes 

related to death events based on the cross-entropy theorem. Table 3 outlines two types of 

events we considered in the loss function, i.e., censored and deceased. The deceased patient 

(e.g., Patients 1, 2, and 3) is assigned a survival status of 0 following the occurrence of a 

death event, whereas the censored patient (e.g., Patient 4) has a survival status of 1 until the 

end of follow-up. In the table, we denote 𝑝 as the patient index, 𝑇𝑝 as the event time for a 

deceased patient or the end of follow-up for a censored patient, 𝑦𝑝 ∈ (0,1) as the event status 

for patient 𝑝 at time 𝑇𝑝, and 𝑒𝑡𝑘

𝑝
 as the survival status for Patient 𝑝 at a particular time point 

𝑡𝑘. Accordingly, we formulated the loss function as 

𝐿𝑐 = − ∑ ∑ {𝑒𝑡𝑘

𝑝
𝑙𝑛 (𝑆𝑝(𝑡𝑘|𝒙, 𝜽))  +  (1 − 𝑒𝑡𝑘

𝑝
) 𝑙𝑛 (1 − 𝑆𝑝(𝑡𝑘|𝒙, 𝜽))}𝑝∈𝑅𝑡𝑘

𝑡𝐾
𝑡𝑘=𝑡0

 (3.7) 

where 𝑅𝑡𝑘
 is a subset of patients. 𝑅𝑡𝑘

= {𝑝 | {𝑦𝑝 = 0}, 𝑜𝑟 {𝑦𝑝 = 1 𝑎𝑛𝑑 𝑇𝑝 > 𝑡𝑘}} consists of 

those patients who have either experienced the death event before the maximum survival 
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time 𝑡𝐾 in OST, represented by 𝑦𝑝 = 0, or those who have not reached the end of follow-up 

𝑇𝑝 at time 𝑡𝑘, indicated by 𝑦𝑝 = 1 and 𝑇𝑝 > 𝑡𝑘. We train the model by minimizing the loss 

function 𝐿𝑐, ensuring that the predicted survival probabilities align closely with the actual 

survival status at each time point.  

3.3.3 Improving Model Interpretability using SHAP Analysis 

SHAP is a model-agnostic method that explains the outputs of machine learning and 

deep learning models [80]. SHAP values highlight the positive and negative impacts of 

individual features on predictions, the relative importance of features, and the 

interrelationships among these features in a specific model’s decision-making process. 

Specifically, SHAP interprets the predictions through an explanation model formulated as 

𝜂(𝜷) = 𝜙0 + ∑ 𝜙𝑗𝛽𝑗
𝑙
𝑗=1      (3.8) 

where 𝜂 is the explanation model, 𝜷 ∈ {0,1}𝑙 represents whether a feature can be observed, 

𝛽𝑗 gives the 𝑗𝑡ℎ value in 𝜷,  𝑙 is the number of input features, 𝜙𝑗 denotes the Shapley value 

for feature 𝑗, and 𝜙0 is a constant value when all inputs are missing. The cumulative sum of 

Shapley values for all features reflects the deviation between the predicted outcome 

generated by the explanation model and the average prediction across all samples [81].  

In this paper, we formulate the Shapley value 𝜙𝑗 as 

𝜙𝑗 = ∑
|𝑀|!(𝑙−|𝑀|−1)!

𝑙!
(𝑓𝑥(𝑀⋃{𝑥𝑗}) − 𝑓𝑥(𝑀))𝑀⊆{(𝑥1,…,𝑥𝑙)}\{𝑥𝑗}    (3.9) 

where 𝑀 is a subset of features used in the original model 𝑓𝑥, 𝑓𝑥(𝑀) indicates the model 

prediction with 𝑀, and 𝑓𝑥(𝑀⋃{𝑥𝑗}) presents the model prediction with 𝑀 and an additional 

feature 𝑥𝑗. According to Equation (3.8) and Equation (3.9), the Shapley value indicates the 

impact of individual features on the final output of the Transformer-based deep survival 
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model. Note that Shapley values can be either positive or negative. Positive Shapley values 

push the model’s prediction values higher, while negative Shapley values drive the model’s 

prediction values lower. 

3.4 Experimental Results 

In the experiment, we first compare the average survival probabilities of censored and 

deceased patients to evaluate the model performance. Second, we use C-index as a 

performance metric to benchmark the predictive accuracy of our proposed model against two 

commonly used deep survival models across the 25%, 50%, and 75% quartiles of the event 

time. Third, we use the SHAP method to further explain predictive outcomes, considering 

both global and local perspectives. 

3.4.1 Evaluation of Model Discriminability between Censored Group and Deceased Group 

The average survival probability offers a comprehensive view of survival trends 

among children and adolescents diagnosed with ALL. A reliable and accurate predictive 

model is expected to consistently yield a higher average survival probability for censored 

patients compared to deceased patients. Hence, we compare the average survival 

probabilities to validate and evaluate the proposed model’s discriminatory ability between 

the censor and deceased groups. 

In the experiment, we use the Adam as an optimizer with a fixed learning rate of 

{0.001, 0.0001} and weight decay of {0.01, 0.001}. We determine the number of 

Transformer layers and heads to be {2, 4}, and the embedding and hidden sizes are selected 

from {32, 64}. Furthermore, we maintain a batch size of 8. Figure 6 illustrates the patient- 

specific survival predictions for children and adolescents with ALL. Each gray line 

represents the predicted survival probability for an individual patient. The green line presents 
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the average survival probability for censored patients in the testing set, while the red line 

represents the average survival probability for deceased patients. The average survival 

probability of censored patients is consistently higher than that of deceased patients, which 

indicates that the proposed model can effectively discriminate between the two groups. This 

demonstrates the model’s potential in predicting personalized survival outcomes for children 

and adolescents with ALL, thereby facilitating early intervention. 

 

Figure 6. Patient-specific survival probabilities over time for children and adolescents diagnosed 

with ALL. Green line represents the average survival probability for the censored patients, while 

red line shows the average survival probability for the deceased patients. 

3.4.2 Quantification of Model Performance with Concordance-index (C-index) 

We use the C-index to evaluate the predictive accuracy of the proposed survival model, 

as it can effectively assess the model’s ability to rank the survival times of patients [42]. It 

is formulated as 

𝐶 =
∑ 𝐼(𝑇𝑢 >𝑇𝑣 )∗𝐼(𝑟𝑣>𝑟𝑢)∗𝑔𝑣𝑢≠𝑣

∑ 𝐼(𝑇𝑢 >𝑇𝑣 )∗𝑢≠𝑣 𝑔𝑣
     (3.10) 

where the indices 𝑢 and 𝑣 represent a pair of patients, 𝑇𝑢 and  𝑇𝑣 denote the survival times 

of patients 𝑢 and 𝑣,  𝐼 is an indicator function, 𝑔𝑣 ∈ (0,1) is a binary variable, and 𝑟𝑣 and  𝑟𝑢 
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are their respective risk scores, refering to numerical values calculated to estimate the 

probability of an individual experiencing a particular event (e.g., death). A patient 𝑣  is 

considered censored if 𝑔𝑣 = 0, while patient 𝑣 is deceased if 𝑔𝑣 = 1. According to Equation 

(10), the C-index can be interpreted as the ratio of the number of concordant pairs to the 

number of all comparable pairs. The dataset consists of three types of cases. First, when both 

patients 𝑢 or 𝑣 are deceased, the pair (𝑢, 𝑣) is considered concordant if 𝑇𝑢  > 𝑇𝑣 and  𝑟𝑣 >

𝑟𝑢 , while it is discordant if 𝑇𝑢  > 𝑇𝑣  and  𝑟𝑢 > 𝑟𝑣 . Second, in cases where one patient is 

censored and the other is deceased (e.g., patient 𝑢 is censored and patient 𝑣 is deceased), two 

scenarios are considered: (1) if 𝑇𝑢 < 𝑇𝑣 , we cannot determine which patient dies first if 

patient 𝑢 dies after the end of follow-up. Therefore, these pairs are excluded from the C-

index computation; (2) if 𝑇𝑢 > 𝑇𝑣, the pair (𝑢, 𝑣) is concordant if 𝑟𝑣 > 𝑟𝑢 and discordant if 

𝑟𝑢 > 𝑟𝑣. Third, when both patients 𝑢 and 𝑣 are censored, and the occurrence of an event after 

the follow-up period and which event occurs first are unknown, these pairs are also discarded 

in the computation process. Values of the C-index range from zero to one, where higher 

values indicate greater model accuracy. A C-index near 0.5 implies the model performs no 

better than random guessing. A C-index greater than 0.8 indicates strong model performance. 

In the experiment, we compare the C-index of our proposed with two commonly used 

deep survival models, namely DeepSurv and DeepHit. The comparison is conducted at the 

25%, 50%, and 75% quartiles of the event time. As shown in Table 4, the proposed model 

achieves C-indices of 0.815, 0.828, and 0.831 at these quartiles. The experimental results 

demonstrate that the proposed model outperforms both DeepSurv and DeepHit across all 

quartiles. These results highlight the robustness and efficacy of our research methodology, 
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further validating the potential application of the proposed model in patient-specific survival 

predictions for ALL.  

Table 4.  C-index Values of Models at Different Quantiles of Event Time 

Survival Model 
Quartiles of Event Time 

25% 50% 75% 

DeepSurv 0.774 0.782 0.803 

DeepHit 0.792 0.791 0.821 

Transformer-

based Survival 

Model 

0.815 0.828 0.831 

 

3.4.3 Model Interpretation with SHAP from Global to Local Perspectives 

The Transformer-based deep survival model we propose exhibits both accuracy and 

robustness in predicting survival outcomes. However, the foundation of this model is a neural 

network, which is typically regarded as a black box. Hence, we address this opacity by 

offering a comprehensive global perspective and a detailed local interpretation of the 

model’s outputs with SHAP analysis. Our goal is to better assist clinicians to make informed 

decisions in real-world scenarios.  

Figure 7 presents a global perspective on model interpretation through SHAP values 

corresponding to each feature. Blue and red markers denote individual data points, with red 

indicating higher feature values and blue indicating lower feature values. The clinical 

features are ranked in descending order of impact on the model output, displayed on the left 

side. Among them, prognosis status, recurrence status, and histology rank as the top three 

impactful features. Notably, recurrence status and prognosis status determined by the post-

induction assessments negatively impact model output, specifically survival probability. 
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These findings can be crucial for healthcare professionals in decision-making processes, 

especially when using the proposed model as a supporting tool. They enable clinicians to 

offer informed prognoses and implement early interventions and treatments for ALL. 

 

Figure 7. Global perspective of SHAP interpretation across various features. 

We also include two waterfall plots in Figure 8, illustrating the impact of each feature 

on survival predictions for two different patients. As shown in each subfigure, 𝑓(𝑥) 

represents the predicted survival probability at the median event time, whereas 𝐸[𝑓(𝑋)] 

corresponds to the average predicted survival probability across all patients within the testing 

set. Figure 8 (a) illustrates how SHAP values impact the survival prediction for the first 

patient. Specifically, a recurrence status of one reduces the predicted survival probability by 

0.1, a prognosis status of one decreases the predicted survival probability by 0.09, and an 

ADCA value of 0.76 lowers the predicted survival probability by 0.01. Conversely, a 

histology of six pushes the predicted survival probability higher by 0.1. For the second 
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patient, as shown in Figure 8 (b), a prognosis status of one and a histology of one negatively 

affect the survival predictions, decreasing the survival probability by 0.07 and 0.02, 

respectively. On the other hand, a recurrence status of zero and an insurance or payer type 

of 1 positively impact survival predictions, driving the predicted survival probability higher 

by 0.07 and 0.01, respectively. According to local perspectives from SHAP, detailed 

explanations of each feature’s impact can be specified, facilitating personalized medical care 

for children and adolescents with ALL. 

 

Figure 8. Local perspective of SHAP values for two patients with waterfall plots: (a) SHAP values 

for the first patient; (b) SHAP values for the second patient. 

3.5 Conclusions 

ALL is the most common type of leukemia among children and adolescents. It produces 

abnormal and immature white blood cells in the bone marrow, mainly lymphocytes, posing 

risks to various health complications and life-threatening events. Enhancing survival rates of 
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ALL relies on a reliable predictive strategy that facilitates timely monitoring and early 

interventions. Survival analysis, as a statistical approach, can predict the time until a health-

related event occurs. However, most existing survival models rely on unrealistic assumptions 

and are limited in their learning capacity with simple model architectures. This paper aims 

to address these limitations by developing a Transformer-based deep survival model to 

predict patient-specific survival probabilities. Moreover, to enhance the model 

interpretability for healthcare professionals, we also explain the impacts of clinical attributes 

on the model output from both global and local perspectives with SHAP analysis. 

Experimental results show that the censored group’s average survival probability is 

consistently higher than that of the deceased group, suggesting the proposed survival model 

is accurate and robust in survival prediction. Moreover, we use the C-index as a performance 

metric to further evaluate the model. The C-index of the proposed model outperforms two 

commonly used deep survival models at three quartiles of the event time and achieves the 

highest value of 0.831 at the 75% quartile. In conclusion, these experimental results indicate 

that the proposed model can precisely predict patient-specific survival probabilities for 

children and adolescents diagnosed with ALL. There are several directions for future work. 

One is to study sequential modeling for time-series survival data that exhibit time-varying 

clinical attributes. Another one is to investigate the methods for incorporating model 

uncertainty into deep learning-based survival models, which aims to account for variability 

in prediction outcomes, ultimately improving the accuracy and robustness of patient-specific 

survival predictions.  
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CHAPTER 4  

A Bayesian Transformer-based Survival Model for Recurrence Prediction 

of Pediatric Acute Lymphoblastic Leukemia 

4.1 Introduction 

Acute lymphoblastic leukemia (ALL) is an acute malignancy of the white blood cells that 

causes the bone marrow to overproduce immature cells by upsetting the usual environment 

[82]. These cells disrupt the immune system, increasing the risk of infection and death if not 

treated appropriately in a timely fashion. Recent cancer statistics also show that ALL is the 

most common type of leukemia among children and adolescents, accounting for 76% of 

children and adolescents with leukemia in the United States [46]. Among all potential clinical 

attributes of ALL, recurrence remains a significant factor that affects survival from ALL. 

Children with recurrence of ALL have a lower survival probability than those that do not 

experience a recurrence [83]. Therefore, predicting the recurrence of ALL becomes urgent 

as healthcare practitioners can use prediction results to provide timely and targeted medical 

care to children with ALL, thereby improving corresponding survival.  

Conventionally, predictive approaches in healthcare range from machine learning 

methods to deep learning algorithms. Machine learning techniques like decision trees [84], 

logistic regression [85], and support vector machines [86] are grounded in solid mathematical 

foundations and have the advantage of interpretability. However, they may lack the capacity 

to process large volumes of data or capture complex, nonlinear relationships as effectively as 

deep learning models [87]. Researchers mainly utilize deep learning methods to make 

predictions, especially deep neural networks (DNNs). Mimicking the complexity of the 
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human brain, DNNs consist of an input layer to receive the data, multiple hidden layers that 

compute and transform the input into higher levels of abstraction, and an output layer that 

delivers the final decision or prediction [88]. However, DNNs often require substantial 

computational resources, leading to a significant computational burden. Most importantly, 

most existing machine learning and deep learning models rely on a single best model, lacking 

in considering and quantifying model uncertainty. Prediction results can be less accurate with 

model uncertainty neglected [89]. Therefore, in this paper, we addressed the issues and 

proposed a deep learning model by integrating the Transformer encoder and Bayesian neural 

networks (BNNs) to predict the recurrence of ALL-diagnosed children by quantifying model 

uncertainty. 

The transformer model [53], first presented by Vaswani et al., has completely changed 

the area of deep learning by providing a unique architecture that draws global dependencies 

between input and output by relying on a mechanism called attention. Because of the design 

of this model, training is parallelized, and computing performance is significantly increased, 

allowing sequences to be processed in their entirety [90]. Because of their adaptability and 

firm performance, Transformers have recently been used and demonstrated success in 

various fields, including text categorization [91] and speech recognition [92]. BNNs infuse 

the principles of Bayesian probability within the structure of neural networks to estimate the 

uncertainty in predictions, providing a mathematical framework to account for model 

uncertainty [93]. Specifically, BNNs use probability distributions to represent the network 

weights, enabling the model to express confidence in its outputs and output an optimal 

distribution of model parameters, accounting for model uncertainty. In this paper, we use the 

Transformer encoder to feature extracting along with a BNN layer to output recurrence 
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probabilities and quantify model uncertainty. In addition, the output vectors from the 

Transformer encoder are clustered into two groups through the K-means algorithm to assess 

model performance.  

The outline of this paper is as follows. Section 4.2 introduces various machine learning, 

deep learning, and model uncertainty applications in the medical domain. Section 4.3 

presents the research methodology. Section 4.4 presents experimental results to evaluate the 

proposed method. Section 4.5 concludes the research. 

4.2 Research Background 

This section reviews existing machine learning, DNNs, and model uncertainty 

applications in the medical domain. Most machine learning methods have demonstrated 

strong potential in predictive tasks but struggle to capture complicated nonlinear relationships 

among variables. In addition, DNNs can produce more accurate results but suffer from 

substantial computational costs. Most importantly, model uncertainty is less considered in 

predictive approaches, leading to less precise prediction results. Therefore, it calls for an 

accurate, low-cost deep model that accounts for model uncertainty. 

4.2.1 Predictive Modeling using Machine Learning Approaches 

Machine learning (ML) is a subset of artificial intelligence that focuses on developing 

algorithms capable of learning from and making predictions or decisions based on data [94]. 

ML empowers computers to detect patterns and connections within data collections, 

fostering predictions grounded in empirical evidence, aiming to produce more accurate 

predictions. The fundamental principle involves training algorithms on a specific dataset, 

allowing data-driven predictions and decision-making rather than following static program 

instructions. ML is broadly divided into supervised and unsupervised learning, each with 
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unique approaches widely used in healthcare. 

Supervised learning models are trained on a labeled dataset, pairing each training 

example with a corresponding output label, allowing the model to learn a mapping 

relationship between input variables and consequent outputs. Common supervised learning 

algorithms include linear regression for predicting continuous outcomes, logistic regression 

for binary classification, support vector machines (SVMs) for margin-based classification, 

and decision trees for hierarchical decision-making. For example, previous research applied 

logistic regression to identify critical factors' contribution to cancer detection [95]. In 

addition, researchers utilized a decision tree for early detection of breast cancer [96]. 

Moreover, SVMs are applied to classify brain tumors, assisting in post-processing the 

extracted region, like tumor segmentation [97]. Machine learning has increasingly become a 

powerful tool for predictive analytics across numerous fields, demonstrating significant 

promise in its ability to analyze large datasets and uncover patterns that can predict future 

outcomes accurately. ML has increasingly become a powerful tool for predictive analytics 

in the healthcare domain, demonstrating significant promise in its ability to analyze medical 

datasets and uncover patterns that can predict future outcomes accurately.  

In contrast, unsupervised learning algorithms are used when the information about the 

output labels is unknown. The primary objective is to explore the underlying structure or 

distribution in the data, discovering patterns without the guidance of a known outcome. 

Unsupervised learning is practical for exploratory data analysis, anomaly detection, and 

complex data generation. There are many unsupervised learning methods applied to 

historical research. For example, Density-Based Spatial Clustering of Applications with 

Noise (DBSCAN) is a clustering approach that defines clusters as areas of high density 
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separated by areas of low density. K-means is another popular unsupervised learning 

algorithm for clustering the data into K groups by minimizing the variance within each 

cluster. In healthcare, there are plenty of applications using K-means. For example, 

researchers used K-means to reduce the dimension of predicting survival outcomes in 

patients with breast cancer [98]. Additionally, K-means clustering was utilized to classify 

acute leukemia [99]. Moreover, researchers developed an enhanced K-means clustering 

method for cancer subtype classification from gene expression data [100]. K-means remains 

a prevalent clustering technique due to its ease of implementation and effectiveness in 

clinical applications. These characteristics ensure its ongoing relevance in clinical data 

analysis and beyond. 

4.2.2 Applications of DNNs in the Medical Domain 

Machine learning methods have been widely adopted in healthcare because of their 

profound capability to process and analyze medical records that contain intricate 

interdependencies among variables. Nonetheless, its capacity to assimilate high-dimensional 

datasets often falls short. Compared to traditional machine learning methods, DNNs have a 

superior capacity for managing and interpreting data across extensive datasets, owing to their 

layered architecture and sophisticated training algorithms, enabling them to identify subtle 

patterns and dependencies in the data more effectively than conventional machine learning 

approaches. 

DNNs comprise multiple interconnected layers of artificial neurons, extracting 

features from raw data for a more informative representation. Each layer in a DNN 

transforms its input data into more abstract representations, effectively building a hierarchy 

of learned features. The ability of DNNs to learn directly from raw data minimizes the need 
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for feature engineering, which is a significant advantage over traditional machine learning 

models. However, this depth comes with increased computational costs and the need for 

substantial training data to achieve remarkable performance. Recurrent Neural Networks 

(RNNs) and Convolutional Neural Networks (CNNs) are two specialized types of DNN 

architectures designed for handling different types of data and tasks [101,102]. RNNs are 

generally designed to process sequential data, such as time series data, while CNNs usually 

work on image data. Both of the approaches have shown strong model performance. 

However, RNNs and CNNs bring huge computational costs because of lacking parallel 

learning capability. Therefore, the Transformer model was developed and widely applied in 

various fields. 

Introduced by Vaswani and colleagues in 2017, the transformer model has radically 

transformed deep learning with its novel structure that captures comprehensive dependencies 

between inputs and outputs solely through an attention mechanism. This configuration 

facilitates parallelized training, markedly enhancing computational efficiency, and permits 

the processing of entire sequence data simultaneously. Due to its versatility and exceptional 

performance, the transformer architecture has seen rapid adoption and achieved remarkable 

success in clinical applications. In 2021, a novel approach to survival analysis using 

Transformer-based models was introduced, emphasizing time-variant modeling of survival 

data [103]. In this methodology, patients are analogized to sentences, with individual 

“words” representing the combined feature embeddings and positional encodings of specific 

time points, discretely measured. Following this, in 2022, the SurvTRACE model was 

created to address multiple competing events by employing a multi-task learning approach 

that utilizes a common backbone structure [104]. These advancements have shown that the 
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application of Transformer technology can lead to more precise survival prediction models. 

However, neither of these models considers model uncertainty. Prediction results can be 

brittle with model uncertainty ignored. 

4.2.3 Predictive Modeling with Model Uncertainty  

Model uncertainty refers to the lack of definite knowledge of the observed process's 

actual function [70]. This type of uncertainty can result in varying predicted outcomes for the 

same input data. Specific inputs and model parameters typically generate a singular 

predictive outcome distribution. However, altering the parameters can lead to various 

models, each producing a unique predictive outcome distribution [105]. Hence, a range of 

possible model functions implies a corresponding range of potential predictive distributions, 

leading to significant uncertainty in predictive modeling.  

Conventionally, extensive studies have explored the significance of quantifying model 

uncertainty in predictive modeling. For example, researchers provide an example of the 

application of Bayesian model averaging in predicting the spatial distribution of an arboreal 

marsupial in the Eden region of southeastern Australia [106]. In addition, studies obtained 

improved credit risk estimates and associated uncertainties using the Bayesian model [107]. 

In these studies, a straightforward elucidation of model uncertainty is pivotal in refining the 

models' accuracy. By rigorously quantifying the uncertainty inherent in the model 

predictions, researchers can better assess the reliability of their results and the potential 

variability in the outcomes, allowing more informed decision-making on predictions. 

A popular deep learning model that considers model uncertainty is Bayesian Neural 

Networks (BNNs). BNNs integrate the principles of Bayesian inference with neural network 

structures, providing a statistical approach to interpreting deep learning outcomes. By 
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considering the weights and biases as variable distributions rather than fixed values, BNNs 

can evaluate the reliability of predictive outcomes. Such an ability to assess reliability is 

especially valuable in scenarios that demand critical decision-making (e.g., in the healthcare 

domain), where knowing the degree of certainty in predictions is imperative. A broad range 

of studies has demonstrated the significance of BNNs. For example, an existing work uses a 

Bayesian neural network for modeling and predicting the probability of gastric cancer patient 

death, indicating that the accuracy of BNNs is higher than that of artificial neural networks 

[108]. This work also illustrates that including model uncertainty aids in enhancing the model 

performance, especially in the clinical domain, to inform critical decisions. 

4.3 Research Methodology 

This section presents the methodology of the proposed survival model to make 

recurrence predictions for children with ALL. As shown in Figure 9, we use a Transformer 

encoder for feature extraction along with BNNs to form the Bayesian Transformer-based 

survival model. Then, the outputs of the proposed model are used for K-means clustering, 

relapse prediction, and model uncertainty quantification. 

 

Figure 9. Flowchart of Research Methodology 
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4.3.1 Data Preprocessing and Problem Formulation of Survival Prediction 

Table 5. Descriptions of Variables 

Variable Description 

Age at Diagnosis Identifies the age of the patient at diagnosis 

Diagnosis Year Identifies the year of diagnosis 

DCAD 
Represents the distance to care (in miles) from address at 

diagnosis to the Oklahoma Children’s Hospital OU Health 

ADAD 
Represents the area deprivation index using national rankings 

based on address at diagnosis 

DCCA 

Represents the distance to care (in miles) from the current 

address in the EHR to the Oklahoma Children’s Hospital OU 

Health 

ADCA 
Represents the area deprivation index based on the current 

address 

Gender Identifies the gender of the patient at diagnosis 

Race/Ethnicity Identifies the race and ethnicity information of the patient 

Histology Indicates ALL subtypes 

Prognosis Status 
Indicates the prognosis status based on the post-induction 

assessment 

Insurance Type/Payer Indicates the insurance type or primary payer of a patient 

Recurrence Status 
Indicates relapse or recurrence that occurred after complete 

remission following initial induction therapy 

 

The data set used in this paper is from the OU Health Cancer Registry, OU Health 

electronic health records (EHR), and the Oklahoma Central Cancer Registry. We included 

275 children and adolescents diagnosed with ALL from 2005 to 2019 [77]. In addition, we 

used 12 clinical variables for modeling in total. Among all variables, there are six numerical 

predictive variables, including age at diagnosis (0 to 19 years of age), diagnosis year, 

distance to care (in miles) from address at diagnosis (DCAD) to the Oklahoma Children’s 

Hospital OU Health, area deprivation index using national rankings based on address at 

diagnosis (ADAD) [78], distance to care (in miles) from the current address (DCCA) in the 

EHR to the Oklahoma Children’s Hospital OU Health, and area deprivation index based on 
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current address (ADCA). Moreover, there are five categorical predictive variables, including 

gender, histology (following the International Classification of Childhood Cancer 3rd 

Edition [79]), race/ethnicity (American Indian, Hispanic, Non-Hispanic (NH) Black, NH 

White, and NH Asian/Pacific Islander), prognosis status (based on post-induction 

prognosis), and insurance/payer type (Indian Health Service, Insured, Medicaid, Uninsured, 

Unknown). Further, the outcome variable is recurrence status, defined as relapse or 

recurrence after complete remission following initial induction therapy. We regularized 

continuous variables and performed one-hot encoding for categorical variables to enhance 

the learning ability of the model. To split the dataset, we divide the dataset into three 

segments: 70% of the data serves as the training set for model development, 10% as the 

validation set, and the remaining 20% as the test set. The training process stops when there 

are no further improvements in the performance of the validation set. Detailed descriptions 

of these variables are provided in Table 5. 

4.3.2 Bayesian Transformer-based Deep Survival Model 

 

Figure 10.  The Architecture of the Proposed Model 

As shown in Figure 10, the architecture of the proposed model contains three 

components: (1) A Transformer encoder with several encoder blocks to perform layer 
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normalization, multi-head attention mechanism, dropout application, and residual 

connection; (2) A BNN layer to output the recurrence probabilities and to account for model 

uncertainty; (3) The output from the Transformer encoder is used for K-means clustering. 

Specifically, the process begins by feeding preprocessed input features into the Transformer 

encoder. Next, output vectors from the Transformer encoder are used for K-means clustering 

(detailed in 4.3.3). Finally, a BNN layer makes relapse predictions for pediatric ALL 

patients. 

The loss function in BNNs fundamentally differs from the loss functions used in 

traditional neural networks due to the probabilistic nature of BNNs [31]. Specifically, we 

denote 𝒘 as the model parameters in the entire network, 𝜽 = (𝝁, 𝝈) is a normal distribution 

with learnable mean 𝜇  and diagonal covariance 𝜎 . Therefore, each 𝑤𝑖  is obtained by 

drawing samples from the normal distribution (𝜇𝑖 , 𝜎𝑖) . If we denote 𝑞(𝒘|𝜽)  as the 

factorized weight posteriors, we train our Bayesian Transformer model by minimizing the 

Kullback-Leibler (KL) divergence [109] between the approximate weight posterior 𝑞(𝒘|𝜽) 

and the true but unknown posterior 𝑝(𝒘|𝒚, 𝑿) , where 𝒚  is the output, 𝑿  represents the 

inputs. Accordingly, the loss function is defined as 

𝐿(𝜽) = min 𝐾𝐿[𝑞(𝒘|𝜽)||𝑝(𝒘|𝒚, 𝑿)].    (4.1) 

According to Bayesian theory and the variance inference approach, Equation (4.1) can be 

written as 

𝐿(𝜽) ∝ min 𝐾𝐿[𝑞(𝒘|𝜽)||𝑝(𝒘)] − 𝐸𝑞(𝒘|𝜽)[𝑝(𝒚|𝑿, 𝒘)],   (4.2) 

where 𝑝(𝒘) represents the prior distribution of weight 𝒘. Specifically, Equation (4.2) is 

equivalent to minimizing a KL divergence regularization term plus an expectation over the 
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negative log-likelihood term,  𝐸𝑞(𝒘|𝜽)[𝑝(𝒚|𝑿, 𝒘)].  

In the experiment, 𝑝(𝒘) is a normal distribution with zero mean and 0.1 standard 

deviation for simplicity. In addition, a sigmoid function is applied on the BNN layer to output 

recurrence probabilities. Moreover, we use a fixed learning rate of {0.001,0.0001}. Further, 

the number of Transformer layers and heads is chosen from {2,4}, the hidden sizes are 

selected from {16,32}, and the batch size is set to 8. 

4.3.3 Recurrence Identification using K-means Clustering 

K-means clustering is a widely used unsupervised machine learning algorithm that sorts 

data into predetermined K clusters based on feature similarity [110]. The primary aim is to 

partition the dataset into K distinct groups such that each data point belongs to the cluster 

with the nearest mean, minimizing the squared differences between the data points and the 

cluster centroid [111]. In this paper, we aim to use the outputs from the Transformer encoder 

to apply the K-means approach, aiming to group the vectors into two identical groups. 

Initially, we chose two random points from the data as starting centroids. Following this, 

each data point is assigned to the closest centroid, which is then updated to be the average 

of the points in its cluster. Specifically, the objective function 𝑍 of the K-means approach is 

defined as 

𝑍 = min ∑ ∑ ‖𝒙 − 𝜶𝑖‖2
𝒙∈𝑆𝑖

𝐾
𝑖=1 .     (4.3) 

where 𝐾  is the number of clusters, 𝒙 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎)  is a set of 𝑚  vectors, 𝑺 =

(𝑆1, 𝑆2, … , 𝑆𝐾) represents a set of 𝐾 clusters, and 𝜶𝑖 is the centroid of 𝑆𝑖, 

𝜶𝑖  =
1

|𝑆𝑖|
∑ 𝒙𝒙∈𝑆𝑖

,       (4.4) 

where |𝑆𝑖| is the size of 𝑆𝑖. 
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Utilizing the K-means clustering algorithm, we can segregate pediatric ALL patients 

into two distinct groups, which enables us to identify patterns correlating with recurrence 

risk. This stratification can be instrumental in prognostication and inform decisions 

regarding the intensity of follow-up and interventions. The K-means approach hinges on 

validation against clinical outcomes to ensure its predictive reliability and carefully selects 

input features most indicative of recurrence risk. 

4.4 Experimental Results 

First, we choose five representative patients from the recurrence and non-recurrence 

groups to compute the patient-specific mean recurrence probability and corresponding 

standard deviation to quantify model uncertainty. Second, we compare the range of the 

recurrence probabilities and non-recurrence groups to validate the model performance. 

Third, we use the confusion matrix to calculate the accuracy and precision of the Bayesian 

Transformer-based deep survival model.  

4.4.1 Quantification of Model Uncertainty 

After the model is trained, we can obtain an optimal distribution of model parameters 

by optimizing the Bayesian Transformer model. Therefore, in the experiment, we draw 

samples from the optimal distribution to get a set of optimal weight tensors, thereby 

obtaining optimal prediction results. As shown in Figure 11, (a) is the recurrence 

probabilities of five patients from the recurrence group, and (b) is the recurrence probabilities 

of five patients from the non-recurrence group. The vertical dashed lines represent the mean 

recurrence probabilities for different patients. In addition, the red and blue shaded areas 

represent corresponding standard deviations, which accounts for model uncertainty.  

We also list the recurrence probabilities of each patient from different groups. As 
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shown in Table 6, both the figure and the table indicate that the recurrence probabilities of 

the recurrence group are mostly greater than 0.5, while the recurrence probabilities of the 

non-recurrence group are mostly smaller than 0.3. This result indicates that our Bayesian 

Transformer model can discriminate whether a patient has a recurrence. 

 
Figure 11. Plots of recurrence predictions under model uncertainty for: (a) recurrence group patients 

and (b) non-recurrence group patients. Vertical dashed lines represent the mean recurrence 

probabilities. Red and blue shaded areas indicate standard deviations that account for model 

uncertainty for recurrence and non-recurrence group patients. 

 
Table 6. Recurrence Probabilities and standard deviations for ten patients from recurrence group 

and non-recurrence group 

Recurrent 

Patient ID  

Recurrence 

Probability 

Standard 

Deviation 

Non-

recurrent 

Patient ID  

Recurrence 

Probability 

Standard 

Deviation 

1 0.6278 0.0498 6 0.1112 0.0226 

2 0.8903 0.0453 7 0.0671 0.0181 

3 0.8254 0.0412 8 0.2199 0.0340 

4 0.6047 0.0503 9 0.1225 0.0229 

5 0.5357 0.0362 10 0.0475 0.0206 

 

4.4.2 Performance Metric of the Bayesian Transformer Model 

As we use K-means clustering to cluster the outputs from the Transformer encoder 

into two groups, we induce the confusion matrix as the performance metric of the proposed 
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model based on the test set [112]. There are fifty patients in the test set, 30 of whom are from 

the non-recurrence group, while 20 are from the recurrence group. As shown in Figure 12, 

17 relapse patients are correctly predicted as recurrence group patients, while 24 non-relapse 

patients are correctly predicted as non-recurrence group patients.  

 

Figure 12. Confusion Matrix of the Bayesian Transformer-based Deep Survival Model 

In addition, the precision measures the proportion of positive identifications that were 

correct, which is calculated by dividing the number of true positive predictions by the sum 

of true positive and false positive predictions: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
   (4.5) 

Another performance matrix is called accuracy, which is the overall correctness of the 

model and is calculated by dividing the sum of the true positive and true negative predictions 

by the total number of predictions: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
   (4.6) 

In this study, our model achieves a precision of 0.85 and an accuracy of 0.82, indicating the 

developed Bayesian Transformer model has strong model performance in predicting the 

recurrence probability. 
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4.5 Conclusions 

ALL, being the most prevalent type of leukemia in children and young adults, presents 

significant challenges in treatment and prognosis. ALL is characterized by the production of 

abnormal white blood cells, which can cause various health issues and potentially fatal 

complications. Among all clinical attributes, recurrence status is essential in survival 

probabilities. Pediatric ALL patients who have recurrence tend to have a lower survival 

probability. Therefore, it calls for an effective and efficient predictive approach to predict 

the relapse of pediatric ALL patients, assisting clinicians in decision-making on prognosis 

and offering timely medical care. 

Traditional machine learning and deep learning-based survival models struggle with 

huge computation costs and limited learning capacity due to their basic structural designs. 

Furthermore, most existing survival models seek to optimize the performance of a single 

best model, overlooking the inherent uncertainties in prediction outcomes as an ensemble of 

models with identical performance can exhibit variabilities in predictions. Prediction 

outcomes can be less precise without incorporating model uncertainty, leading to less reliable 

decisions on prognoses and treatments given to pediatric ALL patients. In response to these 

challenges, in this paper, we develop a Bayesian Transformer-based deep survival model to 

predict patient-specific recurrence probabilities. Through the Transformer encoder, we 

captured feature vectors for a more informative presentation. In addition, by leveraging 

Bayesian Neural Networks (BNNs), our model captures the uncertainties inherent in the 

prediction process, thus providing a more reliable measure of probability for recurrence. 

Furthermore, we use the K-means approach to cluster the output vectors from the 

Transformer encoder into two groups to identify whether a patient has a recurrence in the 
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lifetime. 

Experimental results indicate that the range of recurrence probability of the recurrence 

group is significantly higher than that of the non-recurrence group, suggesting the model is 

accurate and robust in recurrence prediction. Moreover, we use the accuracy and precision 

obtained from the confusion matrix as the evaluation metric. The developed model achieves 

a precision of 0.85 and an accuracy 0.82, respectively. Consequently, these experimental 

results indicate that the proposed model precisely predicts patient-specific recurrence 

probabilities for ALL. Potential future research directions can include studying sequential 

modeling for time-series survival data that exhibit time-varying clinical features. With 

sequential clinical attributes involved, the model can obtain more timely information from 

the patient, thereby further improving the accuracy and robustness of patient-specific 

survival predictions. 
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CHAPTER 5  

Conclusions and Future Works 

In conclusion, the research presented in this dissertation contributes significantly to the 

field of pediatric oncology by addressing the challenge of predicting survival and recurrence 

probabilities in children with Acute Lymphoblastic Leukemia (ALL). First, we introduce a 

Bayesian survival model that integrates model uncertainty with a machine learning model. 

This approach enhances the accuracy of patient-specific survival predictions. Furthermore, 

the development of a Transformer-based explainable deep survival model represents a novel 

integration of advanced deep learning techniques with survival analysis. This model not only 

provides predictions for the time to occurrence of death but also offers explanations for the 

predictions, thereby increasing transparency and trust in the model's outputs. The third 

contribution, which combines the Transformer encoder with a Bayesian Neural Network 

(BNN) layer, further refines the prediction of recurrence probabilities. The inclusion of 

model uncertainty and the clustering of output features provide a robust method for assessing 

model performance and the significance of clinical variables. This work not only captured 

but also quantified model uncertainty through mean recurrence probabilities and 

corresponding standard deviations. Consequently, all three works form an integral, aiming 

to develop survival models of high precision. Therefore, healthcare practitioners can use 

these predictive models to produce accurate patient-specific survival and relapse 

probabilities, thereby informing early intervention strategies, ultimately improving survival 

rates, and addressing demographic disparities in healthcare access. 

For future work, several directions can be explored. Firstly, the implementation of the 
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recurrence prediction can be improved by predicting the recurrence probability across the 

event-free time. Instead of predicting a particular probability for a single patient, predicting 

the function of relapse probability over time can help clinicians provide timely medical care 

to children with leukemia. Secondly, expanding the dataset and including a broader spectrum 

of demographic and genetic factors may enhance the models' predictive power. Thirdly, 

exploring time-varying deep survival models with model uncertainty is also a crucial part. 

In time-varying survival analysis, values of clinical attributes change over time. Therefore, 

potential models can collect more insightful information according to such changes.  
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