
 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

EVALUATING THE ROLE OF QUANTUM ALGORITHMS IN  

SUPERVISED MACHINE LEARNING 

 

 

 

A THESIS 

SUBMITTED TO THE GRADUATE FACULTY  

in partial fulfillment of the requirements for the  

Degree of 

MASTER OF SCIENCE 

 

By 

PABLO GUTIÉRREZ FÉLIX 

Norman, Oklahoma  

2024  



 

EVALUATING THE ROLE OF QUANTUM ALGORITHMS IN  

SUPERVISED MACHINE LEARNING 

 

 

 

A THESIS APPROVED FOR THE 

MICHAEL F. PRICE COLLEGE OF BUSINESS 

 

 

 

 

 

BY THE COMMITTEE CONSISTING OF 

 

Dr. Naveen Kumar, Chair 

Dr. Radhika Santhanam 

Dr. Rajendra Singh 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by PABLO GUTÉRREZ FÉLIX 2024 

All Rights Reserved. 



iv 
 

Table of Contents 
Chapter 1: Introduction 

1.1 Background ............................................................................................................................... 1 

1.2 Objectives and Research Question ............................................................................................ 4 

1.3 Key Contributions ..................................................................................................................... 5 

 

Chapter 2: Literature Review 

2.1 Quantum Enhancement in Supervised Learning ....................................................................... 7 

2.2 Quantum Enhancement in Unsupervised Learning ................................................................ 10 

2.3 Summary ................................................................................................................................. 11 

 

Chapter 3: Building Blocks of Quantum Machine Learning 

3.1 Linear Algebra ........................................................................................................................ 13 

3.1.1 Vectors ............................................................................................................................. 13 

3.1.1.1 Vector Addition ......................................................................................................... 15 

3.1.1.2 Vector Multiplication ................................................................................................ 15 

3.1.1.3 Vectors in Quantum Computing ................................................................................ 17 

3.1.2 Linear Independence and Vector Basis ............................................................................ 18 

3.1.2.1 Vector Basis in Quantum Computing ........................................................................ 20 

3.1.3 Linear Transformations .................................................................................................... 21 

3.1.4 Matrixes ............................................................................................................................ 24 

3.1.4.1 Matrixes in Quantum Computing .............................................................................. 26 

3.1.5 Dot Product ...................................................................................................................... 26 

3.1.5.1 Dot Product in Quantum Computing ......................................................................... 28 



v 
 

3.1.6 Eigenvectors and Eigenvalues .......................................................................................... 29 

3.1.6.1 Eigenvectors and Eigenvalues in Quantum Computing ............................................ 32 

3.1.7 Summary .......................................................................................................................... 32 

3.2 Quantum Physics .................................................................................................................... 33 

3.2.1 The Language of Quantum Mechanics ............................................................................ 33 

3.2.2 Bra-ket Notation ............................................................................................................... 36 

3.2.3 Entanglement .................................................................................................................... 38 

3.2.4 Observables ...................................................................................................................... 40 

3.2.5 The Uncertainty Principle ................................................................................................ 41 

3.2.6 Probability and the Bloch Sphere ..................................................................................... 43 

3.2.7 Summary .......................................................................................................................... 46 

3.3 Quantum Programming with Qiskit ........................................................................................ 46 

3.3.1 Qiskit Introduction ........................................................................................................... 47 

3.3.2 Qiskit Basics ..................................................................................................................... 47 

3.3.3 Quantum Gates ................................................................................................................. 51 

3.3.3.1 X Gate ........................................................................................................................ 52 

3.3.3.2 Z Gate ........................................................................................................................ 54 

3.3.3.3 H Gate ........................................................................................................................ 55 

3.3.4 Qubit Entanglement .......................................................................................................... 58 

3.3.4.1 CNOT Gate ................................................................................................................ 58 

3.3.4.2 CZ Gate ...................................................................................................................... 60 

3.3.4.3 Entangling Qubits ...................................................................................................... 61 

  

Chapter 4: Experiments and Results 

4.1 QKSVM Theory ...................................................................................................................... 64 



vi 
 

4.1.1 SVM ................................................................................................................................. 64 

4.1.2 Kernels ............................................................................................................................. 65 

4.1.3 Quantum Kernels .............................................................................................................. 68 

4.2 Experiments ............................................................................................................................ 69 

4.2.1 Methodology .................................................................................................................... 70 

4.2.1.1 Discrete Logarithm Problem Dataset ........................................................................ 71 

4.2.1.2 Experimental Design ................................................................................................. 72 

4.3 Results ..................................................................................................................................... 78 

 

Chapter 5: Discussion and Conclusion 

5.1 Discussion ............................................................................................................................... 83 

5.2 Conclusion .............................................................................................................................. 85 

5.2.1 Challenges and Limitations .............................................................................................. 87 

5.2.2 Future Work and Recommendations ................................................................................ 87 

5.2.3 Key Learnings .................................................................................................................. 89 

 

Acknowledgments ......................................................................................................................... 90 

References ..................................................................................................................................... 91 

Appendix ....................................................................................................................................... 95 

A.1 Determinants ...................................................................................................................... 95 

A.2 Determinants and eigenvectors .......................................................................................... 96 

A.3 Eigenbasis ........................................................................................................................... 97 

A.4 Imaginary and complex numbers ....................................................................................... 98 

A.5 Complex Conjugate ............................................................................................................ 99 

 



vii 
 

Abstract 

Quantum computing (QC) has emerged as a disruptive technology, promising exponential 

speedups for certain computational problems. At the same time, machine learning (ML) continues 

its transformative journey across scientific domains with its ability to locate patterns within data. 

The intersection of both disciplines, Quantum Machine Learning (QML), offers efficiency and 

optimization speedups in certain learning tasks, captivating the interest of both researchers and 

business leaders. The power of QML lies in its ability to harness quantum properties, such as 

superposition and entanglement, to solve complex business problems more efficiently than 

classical algorithms. These quantum properties can be applied to ML in numerous ways, depending 

on the complexity of the problem. 

This thesis delves into Quantum Kernel Support Vector Machines (QKSVMs), a specific QML 

technique that leverages quantum computing for supervised learning, particularly support vector 

machines (SVMs). The reason behind focusing on this technique specifically lies in the fact that 

quantum algorithms can map data points into a higher dimensional feature space. Through this 

process, quantum kernels aim to locate atypical patterns in data for classification tasks. The 

discrete logarithm problem (DLP) is a common mathematical problem widely used in 

cryptography due to its one-way-function nature and resistance to classical algorithms. It has been 

argued that the case of DLP is a scenario where quantum-inspired algorithms can enhance their 

classical counterparts in terms of accuracy and other machine learning performance metrics. 

Utilizing this mathematical problem as the distribution within a dataset could potentially prove 

quantum advantage, suggesting that using quantum algorithms in certain situations may be 

beneficial. 

This thesis presents empirical evidence of quantum algorithms’ performance enhancements within 

the DLP framework. This work concludes that in specific scenarios like DLP-distributed datasets, 

even near-term quantum algorithms operating with fewer qubits can have an advantage over 

existing algorithms. Furthermore, the findings from this work offer valuable insights to researchers 

and business leaders interested in investing in the design and implementation of QML models in 

scenarios beyond DLP, where quantum algorithms have an advantage over classical algorithms. 

Keywords: quantum computing, kernels, support vector machines, discrete logarithm problem. 
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Chapter 1: Introduction 

 

Data science and information systems are constantly evolving and developing. With the emergence 

of Quantum Computing (QC) in recent years, it is imperative to understand its key aspects and 

evaluate its benefits and limitations. This thesis delves into the foundational concepts of QC and 

the benefits it can provide to Machine Learning, a subset of data science that has sparked interest 

in recent years (Cerezo et al., 2022). Understanding the intricacies of the convergence between 

both fields can have tremendous advantages for industry decision-makers and future researchers 

as quantum computers become more accessible to companies and research institutes worldwide in 

the coming years (Troyer, 2023). 

1.1  Background 

Quantum Computing is the field of computation that utilizes quantum mechanics principles to 

perform computational operations on data. Quantum computers, the devices that allow scientists 

to run quantum computations, are thought to have an advantage over classical computers for 

certain tasks (Troyer, 2023). On the other hand, ML focuses on finding patterns of data, which can 

be used for predictions, decision-making, or gaining insights about the data distribution in question 

(Baheti, 2022). Some business applications of ML are used to tackle classification tasks, like fraud 

detection or sentiment analysis (Mercha & Benbrahim, 2023) (Shehnepoor et al., 2023). 

In recent years, the convergence of QC and ML has been of great interest to researchers, giving 

rise to a new realm: Quantum Machine Learning (QML). This field looks to devise learning 

algorithms more efficiently than their classical counterparts in certain tasks (Pushpak & Jain, 2021). 

Classical machine learning is about finding patterns in data to predict future patterns, and QML 

has the potential to assist in locating those specific patterns that classical machine learning cannot 

grasp, like discrete logarithmic problems (DLP) (Xiao et al., 2023). The technology that powers 

QML is of quantum nature, meaning that it takes advantage of quantum mechanics to apply 

quantum properties to its computations.  

QC is different from classical computing in its mere essence since it uses qubits (quantum bits) 

instead of classical bits (Pushpak & Jain, 2021). While bits can only have two values (0 or 1), 
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qubits can have a superposition of both states at the same time. Moreover, qubits exhibit the 

property of entanglement, where the states of two qubits depend on each other, enabling parallel 

processing of such qubits. These properties are thought to provide exponential computational gains 

when comparing quantum to classical computing, as will be exposed in the literature review (Daley 

et al., 2022). 

QML is being cataloged as a revolutionary technology in almost every existing industry (Troyer, 

2023). For finance, it is argued that quantum computing algorithms can provide a 21% increase in 

returns when used in finance portfolio optimization (Shipilov & Furr, 2022). It is also suggested 

that this technology can assist supply chain activities, enabling up to 60% cost reduction in vehicle 

routing optimization (Shipilov & Furr, 2022). Also, QML has played an important role in fraud 

detection tasks, particularly through the use of a hybrid quantum-classical neural network that 

provided a 1.66% increase in accuracy (Shipilov & Furr, 2022).  

Quantum computing seems to be able to enhance business intelligence (BI), a field in charge of 

utilizing the necessary methods to transform raw data into meaningful insights (Heiner, 2022). 

This is due to the increased amount of data that quantum algorithms allow to manipulate 

simultaneously when paired with a classical algorithm. Therefore, quantum computers would 

allow businesses to calculate complex functions that use several variables, while classical 

algorithms are left with the simpler ones. Besides, BI processes will benefit from quantum 

technologies because the tools will, therefore, be dynamic and constantly updated (Heiner, 2022). 

Bova et al. (2023) suggest that it may be beneficial for companies to adopt quantum computing 

technology over classical, even if quantum advantage is not achieved. However, this quantum 

advantage has yet to be empirically proven for specific business cases. In search of that quantum 

advantage, Zhang and Ni (2020) differentiate between basic quantum machine learning algorithms 

and application algorithms for quantum machine learning. The first group is formed by Grover’s 

swap test, phase estimation, and Harrow-Hassidim-Lloyd (HHL) algorithms, which operate with 

qubits to obtain an exponential or quadratic computational advantage over classical algorithms. 

These basic algorithms serve as the building blocks of the so-called “application algorithms.”  

ML is comprised of several different sections: supervised, unsupervised, and reinforcement 

learning. The applications of quantum computing to each of them open the door to several 

opportunities for QML enhancement (Pushpak & Jain, 2021). Figure 1.1 below shows some of 
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these opportunities, like simulation of quantum systems, enhancement in quantum computing 

techniques, quantum machine perception, and improvements in classical data analysis through 

quantum computing speedups (Cerezo et al., 2022). 

This thesis focuses on supervised learning that utilizes kernels for classification. In ML, a classical 

kernel is a method of using a linear classifier to solve a non-linear problem, like separating the 

data of a dataset into parts depending on specific data features (Krunic et al., 2022). These kernels 

are utilized ML for classification purposes, a technique known as Kernel Support Vector Machines 

(KSVM). This thesis will examine the convergence of QML and KSVM. More specifically, the 

focus is on finding specific scenarios in which a quantum-KSVM (Q-KSVM) has an edge over 

classical KSVM.  

Figure 1.1: Practical implications of QML (Cerezo et al., 2022) 

 

This study allows practitioners and data science researchers to understand the benefits and 

limitations of this quantum classification task. The reason behind focusing on this specific 

algorithm lies in the fact that the intersection of QC and ML opens the door for many quantum 

implementations of existing algorithms, each with a unique structure and functioning. The scope 

of this thesis is restricted to KQSVM, although the conclusions drawn may prove to be helpful in 

the quantum “translation” of other classical algorithms. Furthermore, this thesis aims to contribute 
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to the discourse surrounding QML, unraveling the theoretical foundations and practical 

applications of QML to the realm of data science and information systems. 

1.2  Objectives and Research Question 

Classification tasks are a widely used technique in data science and information systems, but they 

can perform poorly when dealing with linear models (Ganguly, 2021, p. 271). Therefore, it is 

sometimes required to use functions that tackle non-linearly separable datasets, like kernel 

functions. The ability of quantum circuits to map data into a higher dimensional space, like the 

Hilbert space of the Bloch sphere, allows one to classify data in detail. Nonetheless, it is still to be 

determined what type of characteristics in real-world datasets will require such a classification 

technique. 

As will be explored in Chapter 2, Q-KSVM has been proposed for solving classification tasks in 

different disciplines, with quantum success in only a handful of them (Gentinetta et al., 2024). It 

is fundamental to understand that current quantum computers are “noisy” due to their early stage 

of development. In this context, “noise” speaks about the physical disturbances that cause quantum 

information to degrade during a quantum computational process (Munro, 2018), affecting 

experimental outcomes. To address this limitation, computationally expensive quantum simulators 

allow researchers to understand the behavior of quantum systems with few qubits (Johnson et al., 

2014). 

The objectives of this thesis can be divided into two main objectives, given the theoretical and 

experimental approach that is being conducted throughout the exploration. 

The first objective is to conduct experiments, share key results, and provide insights concerning 

the performance of Q-KSVM compared to KQSVM. These empirical explorations are performed 

on several types of datasets with different quantum circuit combinations and by adjusting these 

quantum circuits’ characteristics. Through these experiments, valuable insights will be gained 

about those scenarios in which ML can benefit from the use of QC, as well as those scenarios 

where QC is not necessary. The insights derived from said results are especially relevant to the 

field of cybersecurity and cryptography. As discussed in Chapter 4, the experiments will operate 

with datasets related to the DLP. Besides, although there is a theoretical approach to KQSVM 

applied to DLP-distributed datasets (Liu et al., 2021), a notable gap exists in the literature regarding 
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the practical application of KQSVM in scenarios where a substantial quantum advantage in 

performance is demonstrated. 

The second objective is to investigate and explain the intricacies of quantum mechanics and 

quantum computing to business leaders. More specifically, this objective includes the 

identification of key concepts within quantum computing and machine learning that serve as 

building blocks for further exploration in QML. Furthermore, this thesis summarizes the key steps 

required to use qiskit, a Python-based library developed by IBM Quantum to access and interact 

with quantum devices. 

This thesis will focus on the following research question: In the context of supervised learning, 

and more specifically SVMs, under what scenarios do Quantum Kernel Support Vector Machines 

perform better than classical Kernel Support Vector Machines? 

1.3 Key Contributions  

The outcome of this research is of great support to the data science field and any scientific field 

where QML can be applied. 

This research provides valuable insights into supervised classification methods that utilize kernels. 

The empirical results obtained through this objective hold the potential to support future research 

in QML, particularly through the discussion of those patterns or functions that are challenging for 

classical computing devices to detect. These insights contribute to the advancement of QML 

research and offer guidance for the development of quantum-based machine learning algorithms. 

In addition, this thesis contributes to expanding quantum computing literature in data science and 

information systems literature. Because QML is a domain that has yet to be fully explored in the 

IS domain, the role of QC in Information Systems is still unknown. Therefore, the beginning 

chapters of this thesis aim to provide the foundational theoretical framework required to 

understand the role of QC in Data Science and Information Systems. Moreover, a practical 

demonstration illustrating the implementation of these theoretical concepts will be provided in 

detail, facilitating access for anyone interested in conducting quantum experiments. 

Besides scientific purposes, the thesis's outcome intends to impact the academic and business 

community, which can benefit from the analysis and discussion of this exploration. Researchers in 
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academia and industry can use the experimental findings of this thesis to advance the development 

of quantum machine learning algorithms and methodologies. This thesis aims to provide thought-

provoking experiments on how to implement Q-KSVM in different scenarios, which equips 

stakeholders with the necessary tools to deploy their data and frameworks onto quantum 

computing devices or simulators, facilitating experiments that could potentially benefit their 

organizations. 

In addition, those sectors of industry that focus on ML solutions or that benefit from classification 

tasks in their operations will significantly benefit from the conclusions drawn from this thesis’ 

experiments. While the thesis primarily focuses on data science, it delves into identifying problems 

where quantum computing can enhance existing solutions, offering a new perspective that can be 

extrapolated across numerous industry applications. Through this discussion, industries can 

strategically utilize these insights to optimize their operations and drive innovation in their 

respective domains.   
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Chapter 2: Literature Review 

 

Although QML is a relatively disruptive field, existing research has made considerable progress 

in its development so far. This chapter summarizes the literature and business applications 

concerning QML. Moreover, it analyzes how quantum computing has revolutionized two principal 

areas of ML, supervised and unsupervised learning, while discussing the impact they had on the 

scientific domains that have benefited from the adoption of this novel technology. 

2.1 Quantum Enhancement in Supervised Learning 

Zhang and Ni (2020) provide theoretical insights regarding the power of supervised quantum 

machine learning algorithms. They particularly deepen into Quantum Support Vector Machine for 

classification problems and the mathematical explanation behind the quadratic and exponential 

speedup awarded by both versions of the QSVM algorithm, which uses Grover’s basic algorithm 

as a subroutine. In another paper, Zhang and Ni (2021) dive into the design of quantum neural 

networks with a particular approach to classification tasks. Their experiment shows that their 

quantum neural network design could predict new types of data based on the data points provided. 

Besides, by using this quantum neuron design, they were able to perform a classification task on 

real data. The model could classify the new inputs into two groups, based on twelve input features, 

by applying the logistic regression method. The results portray that the model needed twenty 

iterations for the predictions to be accurate to the actual results. Jiang et al. (2021) provide a deep 

understanding of this matter in a case study, exhibiting a full workflow on how to implement neural 

networks into quantum circuits. 

The applications of supervised QML can also support several scientific fields other than Machine 

Learning and Data Science. For example, it takes ten hours to model one single cell of a bacteria 

called “mycoplasma genitalium,” the simplest form of organism, genetically speaking (Byrum, 

2022). It could take more than a human lifespan to model more complex living organisms like 

humans through classical supercomputers, making a compelling case in favor of quantum 

technology’s computational power (Byrum, 2022). Similarly, Baiardi et al. (2023) make a 

theoretical approach weighing the possible problems that quantum-supervised machine learning 
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can tackle in the field of molecular biology by speeding up the training process and predicting 

more complex relationships between the variables in question. This can be applied to genome 

sequencing, a process that is truly challenging when approached classically but can be enhanced 

using quantum technology. Nonetheless, quantum advantage can be witnessed when manipulating 

large datasets because the previous processing required to utilize a quantum algorithm would 

nullify the advantage provided by such.  

Besides biology, pharmacology can also benefit from quantum machine-learning techniques. 

Ganesh (2021) utilized a modified Quantum Support Vector Machine algorithm to identify 

compounds that could inhibit a promising target associated with Alzheimer’s disease, MSUT-2. 

This supervised model based on quantum technology was trained with dozens of chemical features 

using qiskit, which allowed the authors to predict five possible inhibitors for MSUT-2. To validate 

these results, this methodology was used for other known chemical compounds and 

pharmaceuticals, providing the same positive result. 

In the field of quantum chemistry, Anatole von Lilienfeld (2018) discusses these applications 

within chemical compound spaces. They conclude that QML will allow the scientific community 

to “rectify some of the issues which plague many of the common approximations made within 

conventional compute campaigns, such as the choice of density functionals,” placing special 

emphasis on supervised algorithms. They argue that supervised models, when applied to quantum 

systems, can allow quantum chemists to predict the quantum properties of chemical compounds.  

Bernal et al. (2022) also provide a glimpse into the current perspective of quantum computing in 

chemical engineering. This article suggests that quantum computing will be able to assist in the 

process of measuring kinetic and thermodynamic properties, particularly those that require high 

accuracy for small molecules, like analyses of thermochemistry for gas-phase processes such as 

combustion, pyrolysis, and atmospheric chemistry. The authors emphasize the importance of linear 

regression methods within chemical engineering to describe the relationships between response 

and explanatory variables. They also suggest that quantum algorithms like HHL can assist in this 

process. In another paper, Rupp (2015) utilizes a ridge kernel regression model to predict the 

atomization energies of organic particles. Although this study does not focus explicitly on QML, 

it uses supervised learning methods to predict the atomization energies of small organic molecules. 

By using Gaussian and Laplacian kernel algorithms, the author provides insights into the 
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conjunction between computational quantum chemistry and its benefits for this specific prediction 

task, which could potentially be enhanced by quantum computing technology. 

Supervised quantum machine learning has been widely used in finance research. Orus et al. (2019) 

approached this subfield by reviewing the potential applications of quantum computing to financial 

problems. Optimization tasks are extremely challenging for classical computers, which is 

fundamental for portfolio optimization. The author argues in favor of implementing quantum 

technology to optimize arbitrage opportunities and credit scoring. Besides, they make a case for 

the utilization of supervised QML techniques for specific financial tasks like data classification in 

credit scoring, regression algorithms for supply chains, pricing of financial derivatives, and risk 

analysis. Hybrid classification algorithms have been reviewed as well, particularly for finance 

datasets (Hellstern, 2021). This experiment confronted a hybrid quantum neural network, where 

the final layer of an all-classical neural network is substituted with a quantum network against an 

all-classical neural network. The outcome of this study suggests a slightly better performance of 

hybrid algorithms when compared to all-classical algorithms, given that the number of neurons in 

the last layer was tuned so that both networks had a similar number of parameters. 

Sanz-Fernandez et al. (2021) created a quantum-enhanced Monte Carlo algorithm for price value 

forecasting. By executing this algorithm together with a Gordon-Shapiro model for asset value 

estimation, the authors were able to create a framework that forecasts the value of assets while 

considering the uncertainty of specific financial variables. The findings suggest that, for the same 

computational cost, the quantum model produces a similar result to that obtained through classical 

Monte Carlo while diminishing the statistical error by a quadratic factor.  

Continuing within the finance domain, fraud detection in bank payments can benefit from quantum 

classification techniques. Innan (2023) compares four different types of quantum classification 

algorithms (Quantum Support Vector Classifier, Variational Quantum Classifier, Quantum Neural 

Network (QNN), and Sampler QNN) in the task of categorizing bank payments as fraudulent or 

not. The dataset contained ten features, with one of them being a binary for “fraud” or “not fraud.” 

The QSVC model scored a 0.98 precision score for both fraud and non-fraud cases, being the best 

of the four quantum algorithms. The findings suggest that this algorithm, within supervised models, 

promises to be the best alternative for classification tasks. 
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Quantum classification methods have a history in the manufacturing fields as well, with Guijo’s 

study being the first one to show quantum algorithms outperform classical ones in terms of 

computer vision for product defect detection (Guijo et al., n.d.). The objective of this experiment 

was to train several models (quantum and classical) with labeled images as “with defect” and 

“without defect” so that the model can apply that same pattern to new images. The authors applied 

a Quantum Support Vector Machine and the QBoost algorithm and compared them to their 

classical counterparts: A Support Vector Machine and an AdaBoost algorithm. The experiment 

concluded that even after performing dimensionality reduction in all cases, the quantum algorithms 

provided more accurate classification results than their classical counterparts. This was also 

performed for the QBoost algorithm in the same amount of training time. 

2.2 Quantum Enhancement in Unsupervised Learning 

Because supervised solutions are easier to implement, several publications suggest that the 

ongoing research should focus on the applications of quantum unsupervised models (Perdomo-

Ortiz et al., 2018). Besides, the study suggests focusing on hybrid models: those that conjugate 

classical and quantum algorithms. These seem to be the research areas where scientists are 

struggling, and Perdomo-Ortiz claims that quantum technology may be particularly advantageous 

for those cases. Zhang and Ni (2020) expand on the theory that supports the quantum version of 

the k-means clustering algorithm, typically used for tasks that concern grouping sets of unlabeled 

data. Quantum k-means utilizes the swap-test basic algorithm to calculate the minimum distance 

between data points and their respective clusters. In this paper, two more application algorithms 

are explored, which centered around dimensionality reduction, a subfield within unsupervised 

learning that aims to reduce the number of variables within the data while conserving the 

fundamental variable relationships.  

In their perspective article, Bernal et al. (2022) argue that chemical engineering can benefit from 

quantum unsupervised learning, mainly from dimensionality reduction techniques. This would 

allow scientists to speed up processes of “monitoring, chemometrics, and optimal control for 

energy management.” Prior literature reveals that QML can also support the domain of oncology 

and cancer research. Jain et al. (2020) utilize a combination of classical and quantum algorithms 

to classify two subtypes of non-small cell lung cancer, known as Adenocarcinoma and Squamous 

Cell Carcinoma. The dataset was optimized by using a classical machine learning technique known 
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as “feature selection” so that the variables could fit into a D-Wave Quantum Processing Unit. The 

results of this experiment showed a 95.24% average score of prediction accuracy, matching the 

scores of an all-classical configuration. This suggests that classical-quantum configurations can be 

as beneficial as all-classical configurations. 

Quantum computing Boltzmann Machines can also be utilized with other types of datasets, for 

example, in presidential election modeling (Henderson et al., 2019). This research utilizes D-

Wave’s adiabatic quantum devices to train a set of Boltzmann machines to find correlated systems 

within data from the previous 11 US presidential elections. The results describe that this quantum 

machine learning model forecasted accurate results comparable to the current best election 

forecasting methods. 

Quantum-enhanced unsupervised models are promising in finance applications as well. Palmer’s 

study depicts how a hybrid quantum annealing algorithm could be used to optimize financial 

portfolios (Palmer et al., 2021). The optimization of these large portfolios (with real data) took 

place in minutes per job. Therefore, portfolio optimization through quantum computing is a viable 

option. The authors suggest that using unsupervised methods together with this optimization 

technique can be beneficial when simulating similar financial indexes. Shifting to a different 

domain within finance, quantum unsupervised methods have exhibited enhanced efficiency when 

locating fraud detection in credit card datasets (Kyriienko & Magnusson, 2022). This study 

compares classical methods (SVM for supervised and OC-SVM for unsupervised) to their 

quantum version (QSVM). The results show that in supervised classification, as more features 

(characteristics or attributes of the data) are considered, the quantum algorithm is more accurate, 

while the classical algorithm performs worse due to overfitting. On the other hand, the 

unsupervised classification experiment concludes that quantum kernels also improve as features 

increase, reaching 15% more accuracy than classical kernels. 

2.3 Summary 

Prior literature has shown the initial steps of domains where quantum algorithms may provide an 

edge over their classical counterparts, particularly for supervised applications. Although quantum-

enhanced unsupervised models have not been as widely researched as quantum-enhanced 

supervised ones, previous publications suggest positive clues of beneficial applications regarding 
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quantum technology in this specific subtype of Machine Learning. Regardless of the field and 

domain of the publications reviewed in this section, all authors concluded that as quantum 

hardware and access continue to evolve, scientists will have a better chance to prove the potential 

of quantum algorithms compared to current classical algorithms. 

Circling back to supervised learning, particularly kernelized SVMs, it has been argued that 

quantum kernels can exploit quantum feature spaces to map data into a quantum Hilbert space 

(Havlíček et al., 2019; Schuld & Killoran, 2019). Within this realm, this thesis will particularly 

examine the idea portrayed by Liu, Arunchalam, and Temme (2021) in their paper “A rigorous 

and robust quantum speed-up in supervised machine learning.” Although it is not a practical 

approach, they establish a concept class where quantum kernels have a better performance than 

classical kernels for datasets with a distribution following the DLP. 
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Chapter 3: Building Blocks of Quantum Machine Learning 

 

To understand QML, it is imperative to rely upon quantum mechanics, which is why this chapter 

focuses on covering the prior knowledge required to understand this domain. Overall, the process 

of acquiring this background can be separated into two steps: Linear Algebra and Quantum Physics. 

Section 3.1 covers the basic concepts of linear algebra, which will aid in comprehending the 

quantum mechanics concepts covered in Section 3.2 that apply to quantum computing. Finally, 

Section 3.3 will cover the fundamentals of coding in the realm of quantum computing. 

3.1 Linear Algebra 

In quantum computing, key concepts are described and understood through linear algebra, which 

is considered the language of quantum computing. Under the broad umbrella of linear algebra, 

several underlying topics need to be comprehended sequentially. Therefore, this section covers the 

basic building blocks of linear algebra: vectors, vector bases, linear transformations, inner products, 

eigenvectors, and eigenvalues. 

3.1.1 Vectors 

The fundamental unit of information within a quantum computer is known as a qubit (a quantum 

bit), and a qubit is represented through a vector. Vectors are the building blocks of linear algebra 

and are mathematical concepts used to describe objects with magnitude and direction. For example, 

a car travels at 50 km/h towards the east. This real-life example can be represented through a vector 

because it gives two pieces of information: the magnitude (50 km/h) and the direction in which the 

car is traveling (east). Although vectors can be used to describe physical concepts, like the velocity 

of a car, they can be understood as purely mathematical concepts. Figure 3.1 below shows an arrow 

pointing toward a specific direction within a coordinate system, which is a graphical representation 

of a vector. 
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Figure 3.1: Vector Within a Coordinate System. 

 

 

 

 

 

 

To represent it in a 2-dimensional space, the information it conveys can be broken down into its 

X-axis and Y-axis components. As Figure 3.2 portrays, the original vector (in red) can be broken 

down into its X coordinate (in blue) and Y coordinate (green). This permits the tracking of the 

“path” needed to travel to get to the point to which the vector is pointing. Although there are 

numerous ways to notate vectors, the most common is to represent them with an arrow on top of 

the variable to which they are assigned (�⃗�). 

Figure 3.2: X and Y Components of a Vector 

 

Vectors are expressed through squared brackets, where the number on top represents the X-

coordinate, and the number below represents the Y-coordinate. For the vector represented above, 

one of the possible representations is as depicted in Equation 3.1: 
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�⃗� = %	
𝑥
𝑦	) 

(3.1) 

3.1.1.1 Vector Addition 

Next, this subsection reviews vector addition and multiplication since the other operations (like 

subtraction and division) are derived from the first two. When adding vectors, the second vector's 

arrowhead is positioned at the endpoint of the first vector's arrow, and then a new arrow (the 

resultant vector) is drawn from the origin of the plane (the point where the X and Y axes intersect) 

to the endpoint of the second vector, as illustrated in Figure 3.3. Note that Figure 3.3 is a 

consequence of the theoretical description in Equation 3.2: 

%
𝑥!
𝑦!) 	+ 	 %

𝑥"
𝑦") = 	 %

𝑥! + 𝑥"
𝑦! + 𝑦"

) 

(3.2) 

Figure 3.3: Vector Addition 

  

3.1.1.2 Vector Multiplication 

Vector multiplication either increases or decreases the magnitude of the given vector by a specified 

scalar factor. Vector multiplication is often referred to as "scaling" because a scalar is a magnitude 

without direction, which multiplies the original vector. To find the resultant vector from the 

multiplication, trace the arrowhead starting at the origin, following the formula (see Equation 3.3 

and Figure 3.4): 

https://www.bing.com/ck/a?!&&p=aa789d61fb29dc10JmltdHM9MTcxMDYzMzYwMCZpZ3VpZD0xNjkwYjU1OS1mMjFjLTYwNDgtMWY4Mi1hMTcwZjNiZDYxMmQmaW5zaWQ9NTk3MA&ptn=3&ver=2&hsh=3&fclid=1690b559-f21c-6048-1f82-a170f3bd612d&psq=whats+the+origin+in+math&u=a1aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvT3JpZ2luXyhtYXRoZW1hdGljcyk&ntb=1
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2 · %
𝑥
𝑦) = 	 -

2𝑥
2𝑦. 

(3.3) 

Figure 3.4: Vector Multiplication 

 

Vectors can also be represented in a 3-dimensional space. To represent this, a new coordinate (z) 

is introduced to the previously mentioned notation, which is placed perpendicular to the “y” 

coordinate. Figure 3.5 below shows the three coordinates (x, y, and z components of a 3-

dimensional vector derived from Equation 3.4: 

𝑏0⃗ = 1
	𝑥
𝑦
𝑧	
3 

(3.4) 

Figure 3.5: 3-Dimensional Vector 
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3.1.1.3 Vectors in Quantum Computing 

All this theoretical knowledge concerning vectors applies to quantum computing because this 

discipline can bring classical bits (which can only be either 0 or 1) into the quantum world, where 

elements can have several values at the same time. The result is the qubit, which can be in a 

superposition of 0 and 1. When a qubit is measured, the results can only be either 0 or 1, but the 

probability of getting a certain result is given by the state of the qubit, known as the “quantum 

state.” For a single qubit, the X component of the vector will hold the coefficient of the qubit’s 

probability of collapsing into 0, and the Y component will hold the coefficient for the probability 

of collapsing into 1. 

Quantum physics uses bra-ket notation ( ∣ 𝜓⟩ ) to portray the values of the vector. This notation is 

formed by three different symbols: “∣,” 𝜓,” and “⟩” (Schwabl, 2007). First, the pipe “∣” is used to 

indicate one of the edges, in this case, the start of a quantum state representation. The Greek letter 

“𝜓” (“psi”) is used as a label to portray the state of the quantum system itself. The symbol “⟩” 

closes the quantum state vector notation by matching the “∣” (find a more detailed explanation of 

bra-ket notation in Section 3.2.2). The state of the qubit (𝜓), which has a probability α of measuring 

0 and a probability β of measuring 1, can be represented by the vector portrayed in Equation 3.5: 

∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩	 

(3.5) 

It is important to understand that when talking about the state of a qubit, the context refers to its 

vector expression. The probability of a qubit being 0 or 1 when it is measured is derived from this 

state, but the probability is not the state itself. Therefore, two different qubit states can have the 

same probability of collapsing into 0 or 1 when measured. When performing operations with a 

qubit, the qubit’s state changes (the coefficient holding the probabilities of the qubit collapsing 

into 0 or 1). Before collapsing, the qubit is both 0 and 1 at the same time, providing exponential 

computational advantage compared to classical computers. This means that, before collapsing, one 

qubit has the computing power of two bits, two qubits have the power of four bits, three qubits 

have the power of eight bits, and so on. The result of this superposition is a machine that is not 

only way faster than conventional computers but also can make calculations that our computers 

simply cannot (Ladd et al., 2010). 
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3.1.2 Linear Independence and Vector Basis 

The next concept is “linear combination,” which is paramount to understanding the nature of linear 

algebra. As its name indicates, a linear combination is a function that operates with vectors and 

scalars to form new vectors. These resultant vectors are linear combinations of the “natural” 

vectors and scalars.  

Colors can be a helpful metaphor for visualizing this (Beneschan 2020). When designing a painting, 

an artist typically includes five primary colors in their palette: red, yellow, blue, white, and black. 

By combining these fundamental colors, artists can create any other color in the spectrum. The 

spectrum in linear algebra is called span, which accounts for all the possible linear combinations 

within a vector set. What is crucial to understand here is that these five primary colors are 

completely independent of each other. Therefore, for example, no amount of red will ever be able 

to produce black paint. This same logic extends to the combination of all five primary colors. 

Applying this reasoning to linear algebra, two vectors (�⃗� and 𝑏0⃗  ) are linearly independent when it 

is impossible to scale �⃗�	 to obtain 𝑏0⃗ . Examine Equation 3.6, where 𝑐# is a set of scalars, and �⃗�#	is 

a set of vectors: 

𝑐! ∙ �⃗�! + 𝑐" ∙ �⃗�" + 𝑐# ∙ �⃗�# = 0 

(3.6) 

	For a vector set to be linearly independent, the only way to satisfy this equation will be for all the 

constants (𝑐!, 𝑐", … , 𝑐#) to be 0. This is because each vector (�⃗�!, �⃗�", … , 𝑣#) is the only one in the 

vector set that contains information about a specific coordinate of the vector space. For example, 

vectors %01)  and %10) . This vector set is linearly independent because %01)  has value in the Y-

coordinate, but no value in the X-coordinate, and vice versa with vector %10). This case, therefore, 

satisfies the previous equation, where the only solution to obtain 0 as a result is by setting the 

constants to 0, as seen in Equation 3.7: 

𝑐! ∙ %
0
1) 	+ 𝑐" ∙ %

1
0) = 0 
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	0 ∙ %01) 	+ 0 ∙ %
1
0) = 0 

(3.7) 

Now that the terms linear combination and linear independence are clear, it is possible to dive into 

the painting metaphor again. Following the logic explained before, green is a combination of blue 

and yellow, and pink is a combination of red and white. But how does one know whether a color 

is a primary color? Two rules need to be followed for this to take place: 

 

1- The given color must be independent from the other primary colors (i.e., no amount of red 

will ever produce black). 

2- The given color, alongside the other primary colors, must be part of the color spectrum. 

 

When transferring this logic to linear algebra, linear combinations can be obtained by adding and 

scaling “primary” vectors, which in linear algebra are called basis. A set of vectors 𝑛 in a vectorial 

space 𝑆 can be categorized as a basis if it follows these two requirements: 

 

1- The vectors within the vector set are linearly independent. 

2- The vectors within the vector set span within the vectorial space 𝑆. 

 

Examine the example of vectors %01) and %10). As shown previously, it has been proved that these 

vectors are a set of linearly independent vectors, but because they both exist in a 2-dimensional 

plane (vectorial space), they can also be recognized as a basis. This means that, by scaling and 

operating with the basis %01) and %10) as seen in Figure 3.6, any possible vector in the 2-D plane can 

be created. 
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Figure 3.6: Span of Vector Basis 

 

3.1.2.1 Vector Basis in Quantum Computing 

As mentioned previously, any given state for a qubit can be described by only using a linear 

combination of the states ∣0⟩ and ∣1⟩. Therefore, ∣0⟩ and ∣1⟩ are the vectors that form a basis for 

single-qubit states. This is the main basis used for qubit representation, but there can be infinitely 

more bases. For example, imagine a qubit in a state that has the same probability of measuring 0 

and measuring 1. This state is represented by the vector of Equation 3.8 (the coefficient !
√"

 will be 

talked about in a later chapter, but as it can be inferred, the coefficient is the same for 0 and 1, 

which therefore provides the same likeliness of measuring 0 or 1): 

	∣ +⟩ =
1
√2

	 ∣ 0⟩ +
1
√2

∣ 1⟩	 

(3.8) 

Assume the quantum state of Equation 3.8 as the state ∣+⟩. Moreover, when the sign of the second 

coefficient is flipped, it is named ∣-⟩, as depicted in Equation 3.9: 

	∣ −⟩ =
1
√2

	 ∣ 0⟩ −
1
√2

∣ 1⟩	 

(3.9) 

Although both states are different, the probability of obtaining 0 and 1 when the qubit is measured 

is the same (50% each). As surprising as it may be, ∣+⟩ and ∣-⟩ also form a basis for single-qubit 

states because any qubit state can be described using a linear combination of these two vectors. 
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For example, if adding ∣+⟩ and ∣-⟩, the second coefficient will cancel out, leaving only √2 ∣ 0⟩	 as 

the resultant quantum state. Likewise, when subtracting them, the quantum state would be reduced 

to √2		∣1⟩ only. 

Take the following state ∣ 𝑧⟩ as an example, and substitute for the ∣ +⟩ and ∣ −⟩ basis, as portrayed 

in Equation 3.10: 

∣ 𝑧⟩ =
√3
2 	 ∣ 0⟩ +

1
2 ∣ 1⟩ = 	

√3
2 	(√2 ∣ +⟩ + √2 ∣ −⟩) +

1
2 (√2 ∣ +⟩ − √2 ∣ −⟩); 

∣ 𝑧⟩ = (
√3 + 1
√2

	) ∣ +⟩ +	(
√3 − 1
√2

	) ∣ −⟩ = 𝑎 ∣ +⟩ + b ∣ −⟩ 

(3.10) 

The state ∣ 𝑧⟩ , which was expressed through the basis of ∣ 0⟩  and ∣ 1⟩  can also be expressed 

through the basis of ∣ +⟩ and ∣ −⟩. The state continues to be the same, but the coefficients have 

changed. Vectorial bases can be incredibly useful in quantum computing. Think about this analogy 

that compares vectorial bases to spoken languages: English and Spanish use different vocabulary 

and grammatical rules, yet both languages can portray the same ideas and feelings through speech 

and written text. Vectorial bases work similarly since different vectorial bases can represent the 

state of the same qubit under their own “rules” (Nielsen & Chuang, 2010, p. 14). 

3.1.3 Linear Transformations  

A linear transformation is an operation performed on a vector, which outputs a new “transformed” 

vector. This operation can be thought of as a function that operates on a vector, where the function 

specifies what needs to be done to the coordinates of the original vector to obtain the transformed 

vector. For example, see Equation 3.11: 

𝑇 %
𝑥!
𝑥") = 	 %

𝑥! + 𝑥"
3𝑥!

) 

(3.11) 

This vector transformation adds the X and Y components and sets the result as the X component 

of the transformed vector. Besides, it triplicates the X component of the original vector to produce 
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the Y component of the transformed vector. Vector transformations can also be notated through 

the following expressions in Equation 3.12: 

𝑇(𝑥!, 𝑥") = (𝑥! + 𝑥"	, 3𝑥%) 

𝑇: %
𝑥!
𝑥") → %

𝑥! + 𝑥"
3𝑥!

) 

(3.12) 

Now, the focus will be directed towards a type of vector transformation called linear 

transformation or 𝑇, which is used in several real-life applications, like in video game design when 

the game shows the same scenery from different perspectives depending on the character. For a 

vector transformation to be a linear transformation, it must hold these two specific linearity 

properties true: 

1- 𝑇K�⃗� + 𝑏0⃗ L = 𝑇(�⃗�) + 𝑇(𝑏0⃗ ) 

2- 𝑇(𝑐 ∙ �⃗�	) = 𝑐 ∙ 𝑇(�⃗�),			𝑤ℎ𝑒𝑟𝑒	𝑐	𝑖𝑠	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

To observe these properties graphically, a specific vector transformation can be applied to all the 

vectors of a plane. Therefore, the resultant grid of the plane will be different from the original 

plane. Nonetheless, the properties mentioned above state that it will be a linear transformation only 

if, after the plane transformation, all lines within the plane remain lines (not curves) and if the 

origin remains fixed. Figure 3.7 shows graphical examples for both types of situations (linear and 

non-linear): 

- This is a linear transformation: 

 

Linear T

T 

Figure 3.7: Graphical Examples of Linear Transformations 
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- This is not a linear transformation (curves instead of lines within the plane): 

 

 

- This is not a linear transformation (origin is not fixed):  

 

But how does one find the transformation function? In other words, how does one know the 

formula that, when given the input vector, outputs the transformed vector? It is possible to do so 

through the basis vectors 𝚤	W = 	 %01) and 𝚥̂ = 	 %10) , by tracking where these vectors land once the 

transformation has taken place. For example, imagine a vector �⃗� = %−12 ) , which can be rearranged 

as �⃗� = −1𝚤	W + 2𝚥̂ . After the linear transformation, it is inferred that 𝚤	W - transformed lands at % 1−2) , 

and that 𝚥 ̂– transformed lands at %30). By applying this to the previous equation, the landing spot 

for 𝑇(�⃗�) can be deduced through the logic in Equation 3.13: 

𝑇(�⃗�) = −1 % 1−2) + 2 %
3
0) 

Linear T 
T

T 

Linear T

T 



24 
 

𝑇(�⃗�) = - −1
(1) + 2(3)

−1(−2) + 2(0). 

𝑇(�⃗�) = %52) 

(3.13) 

The reason this process is so powerful lies behind the fact that any transformed vector can be 

obtained by only knowing three pieces of information: The original vector, 𝚤	W - transformed, and 𝚥̂ 

– transformed. 

3.1.4 Matrixes 

The term “matrix” refers to a combination of vectors which can be arranged in columns and rows. 

They are referenced to represent linear combinations, as mentioned in the previous section, and 

can have as many rows and columns as needed. Some examples of matrixes are depicted in 

Equation 3.14: 

%1	00	1)						%
1	2	3
4	5	6)					]

5	1	4
2	3	6
2	6	4
3	9	5

_ 

(3.14) 

Matrixes are especially useful for linear transformations since they are used to represent the final 

coordinates of the transformed basis vectors together. This permits the calculation of any resultant 

vector derived from the linear transformation with a simple two-by-two matrix. To set up this 

transformation matrix, the first column represents where 𝚤	W  - transformed lands, and the second 

column where 𝚥 ̂– transformed lands. Using the example from the section above, Equation 3.15 

shows the transformation matrix:  

%			1				3		−2			0		) 

 

(3.15) 
𝚤	W  - transformed  𝚥 ̂– transformed 
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By multiplying the original vector ( �⃗� = %−12 ) ) with this matrix, the resultant transformed vector 

is obtained. Hence, this two-by-two matrix is key for this specific linear transformation, which will 

unlock the resultant transformed vector within this 2-D space. Matrix multiplication follows the 

procedure portrayed in Equation 3.16: 

%𝑎		𝑏𝑐		𝑑) %
𝑥
𝑦) = 𝑥 %𝑎𝑐) + 	𝑦 %

𝑏
𝑑) = 	 -

𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦.	 

(3.16) 

Linear transformations can be applied one after another as well. This means there will be two two-

by-two transformation matrixes (M1 and M2), where each one holds the values of where 𝚤	W and 𝚥̂ 

would land in each case. Therefore, it is imperative to find the composition of both transformation 

matrixes that will unlock the destination of 𝚤	W and 𝚥̂ after both linear transformations have taken 

place. This can be obtained by multiplying both transformation matrixes. It is important to note 

that the order in which the linear transformations are applied directly influences the outcome of 

the composite matrix. This is why M1 will be located on the right and M2 on the left (following 

the logic of composite functions), as shown in Equation 3.17: 

%𝑎		𝑏𝑐		𝑑)		-
𝑒		𝑓
𝑔		ℎ. = %?			??			?)	 

(3.17) 

To compute the composition matrix, M1 is separated into two separate vectors. After that, calculate 

the position at which M1’s 𝚤	W  (in blue) and 𝚥 ̂(in red) will land after M2’s (in yellow) transformation, 

as shown in Equation 3.18:  

%𝑎		𝑏𝑐		𝑑)		-
𝑒		𝑓
𝑔		ℎ. = %?			??			?) 

(3.18)	 

When translating this diagram into a formula with variables, obtaining Equation 3.19: 

M
2 

M
1 
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%𝑎		𝑏𝑐		𝑑) -
𝑒	𝑓
𝑔	ℎ. = -𝑎𝑒 + 𝑏𝑔					𝑎𝑓 + 𝑏ℎ𝑐𝑒 + 𝑑𝑔					𝑐𝑓 + 𝑑ℎ		.	 

(3.19) 

3.1.4.1 Matrixes in Quantum Computing 

Linear transformations (represented through matrixes) are used to interact with qubits and get 

information from them. In classical computers, bits go through logical gates, and computations are 

performed on their value (0 or 1). The same can be said for quantum computers. Qubits 

(represented by vectors) go through quantum gates (which are linear transformations in their 

matrix form) that transform the qubit into its different possible states. Therefore, matrixes are 

fundamental to unleashing the power of quantum computers to their full potential. Because qubits 

can hold any value between 0 and 1, linear transformation matrixes will allow the manipulation of 

all the possible combinations between 0 and 1. For example, the quantum NOT gate (X), shown 

in Equation 3.20, switches the coefficients of ∣0⟩ and ∣1⟩ as follows: 

%0 1
1 0) %

𝛼
𝛽) = %𝛽𝛼) 

(3.20) 

Another fundamental quantum gate is the Hadamard gate (see Equation 3.21 below), which turns 

∣0⟩ into ∣+⟩ and ∣1⟩ into ∣-⟩ (Nielsen & Chuang, 2010, p. 18). 

𝐻 =
1
√2

%1 1
1 −1) 

(3.21) 

3.1.5 Dot Product 

This subsection introduces another linear algebra concept that will be useful for the understanding 

of quantum computing in the future, known as the dot product. This mathematical operation takes 

two vectors within the same dimension as input and outputs a scalar, providing information about 

their relationship. Equation 3.22 portrays how the dot product is calculated: 
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%𝑎𝑐) ∙ %
𝑏
𝑑) =

(𝑎 ∙ 𝑏) + (𝑐 ∙ 𝑑) 

(3.22) 

The dot product is related to the projection of a vector onto another vector. This idea can be 

approached as casting the shadow of a vector on top of another vector. Figure 3.8 below represents 

the projection of 𝑤00⃗  (pink) on �⃗� (yellow). The length of the resulting shadow is directly related to 

the dot product’s result. 

Figure 3.8: Projection of a Vector onto Another Vector 

 

When computing the dot product of a vector times itself (for example �⃗� and �⃗�), the resultant 

“shadow” would be the length of �⃗�. However, when calculating the dot product of perpendicular 

vectors, the result will be 0, as no “shadow” can be projected at all. Therefore, when the dot product 

of two vectors is 0, they are known as orthogonal and cannot be expressed as a linear combination 

of the other. As can be inferred from Figure 3.9, no shadow can be cast in this situation since both 

vectors are perpendicular. Figure 3.9 is an example of a pair of orthogonal vectors whose dot 

product equals 0: 
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Figure 3.9: Orthogonal Vectors 

 

The dot product is particularly useful for calculating another property of vectors: the modulus. 

This concept stands for the magnitude (or length) of a vector, and its notation and formula are 

shown in Equation 3.23: 

|𝑣| = f�⃗� 	 ∙ 𝑣 

(3.23) 

Observe that the operation taking place within the square root is the vector's dot product with itself. 

Note that the length of the vector is related to the dot product. 

3.1.5.1 Dot Product in Quantum Computing 

There are multiple applications of the dot product in quantum computing, such as vector 

normalization. Take the following qubit state in Equation 3.24 as an example:  

∣ 𝜓⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩	 

(3.24) 

The probability of measuring 0 is given by 𝛼	 ∙ 𝛼∗ , and the probability of measuring 1 is 𝛽 ∙ 𝛽∗. 

Since the only possible outcomes once the qubit is measured are either of these two values (0 and 

1), the probability of measuring 0 plus the probability of measuring 1 must always add up to 1, 

following the total probability theorem. Therefore, as it can be inferred, neither 𝛼 nor 𝛽 is greater 

than 1. Because the modulus of an arbitrary vector can take any value, our scope is to scale it 

(multiply the vector by a factor) so that its modulus is equal to 1, and it will follow the probabilistic 
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logic desired. This means that the modulus of our vector must follow this condition, known as 

normalization, which all quantum states must fulfill. See Equation 3.25: 

|∣ 𝜓⟩| = f∣ 𝜓⟩ 	 ∙	∣ 𝜓⟩∗ = 1 →	∣ 𝜓⟩ 	 ∙	∣ 𝜓⟩∗ = 1 

(3.25) 

Note that the dot product is referred to as the “inner product” in the realm of quantum mechanics 

(Ganguly, 2021, p. 8). The main difference between them lies in the type of vectors they operate 

on. The inner product operates with real and complex vectors. The dot product is a type of inner 

product that operates only with real vectors (Nielsen & Chuang, 2010, p. 66). Because quantum 

mechanics operates in a complex vectorial space, the term “inner product” is more accurate. 

3.1.6 Eigenvectors and Eigenvalues 

This section will focus on the concepts of eigenvectors and eigenvalues, which are crucial for a 

deep understanding of linear algebra and, therefore, quantum computing. An eigenvector refers to 

a vector that remains unchanged after a linear transformation. This means that the vector continues 

to be within the same span as it was before the linear transformation, although it may have been 

scaled. An eigenvalue refers to the factor by which the eigenvector is scaled after the linear 

transformation has taken place. For example, refer to Figure 3.10 below: 

 

This example shows how, after the linear transformation, 𝚤	W  is an eigenvector because it continues 

pointing in the same direction as before the transformation. In this case, it can be quickly 

understood that the eigenvalue is 3, since 𝚤	W  was scaled by a factor of 3. Before the linear 

Linear T 
T 

Figure 3.10: Eigenvectors After a Linear Transformation (1) 
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transformation, its coordinates were %10) , and after the transformation they are %30). It is important 

to understand that there may be multiple eigenvectors (and therefore eigenvalues) in a linear 

transformation. Figure 3.11 is another example that has an eigenvector in the diagonal with an 

eigenvalue of 2 represented through a purple arrow: 

 

 

An equation that includes both variables must be established to algebraically determine both the 

eigenvector and the eigenvalue. On one side of the equation, there is the transformed eigenvector, 

and on the other side, the eigenvector scaled (multiplied by the eigenvalue), as seen in Equation 

3.26: 

𝐴�⃗� = 	𝜆�⃗� 

(3.26) 

In this equation, A stands for the transformation matrix, �⃗� is the eigenvector, 𝜆 is the eigenvalue, 

and the notation “||” will compute the determinant1. Therefore, both sides are representing the 

transformed eigenvector. After rearranging Equation 3.262, Equation 3.27 below is obtained: 

 
1 See Appendix – Determinants. 
2 See Appendix - Eigenvectors and Eigenvalues formula. 

Linear T

T 

Figure 3.11: Eigenvectors After Linear Transformation (2) 
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|𝐴 − 𝜆𝐼| = 	0 

(3.27) 

Once the value of λ is known, the eigenvalue is substituted in the equation and solved for �⃗�, which 

provides the coordinates of the eigenvector. 

Now, what if both 𝚤	W and 𝚥̂ are eigenvectors? For example, given the linear transformation in Figure 

3.12, 𝚤	W (green) is scaled by -1 and 𝚥̂ (red) is scaled by 2. This means that the transformation matrix 

will have the form of a diagonal matrix, a matrix whose values can only be found in its diagonal. 

From the example above, the transformation matrix would be the following diagonal matrix 

portrayed in Equation 3.28: 

%	−1		0			0		2) 

(3.28) 

 

These diagonal transformation matrixes are formed by eigenvectors (𝚤	W and 𝚥̂ ), where each of the 

values within that diagonal matrix accounts for each of their eigenvalues. Diagonal matrixes are 

of great interest in linear algebra since they allow for much faster matrix computations. For 

example, when multiplying a diagonal matrix multiplied by itself, it is only required to square the 

diagonal values. Therefore, escalating this reasoning to higher powers, the marginal benefit is 

exponential. To take advantage of transformation diagonal matrixes, it is imperative to find 

Linear T 

Figure 3.12: Eigenvectors After Linear Transformation (3) 
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eigenvalues of a linear transformation and use them as vector basis, or the “new” 𝚤	W and 𝚥 ̂3. These 

new vector bases, coming from the eigenvectors of a linear transformation, are known as 

eigenbasis. 

3.1.6.1 Eigenvectors and Eigenvalues in Quantum Computing 

Eigenvectors and eigenvalues are crucial to understand quantum physics. As will be shown in 

Section 3.2, one of the properties of quantum systems is that their magnitudes cannot take any 

value. Take, for example, the process of measuring the energy of a given quantum system. To find 

the possible energy values, one of the most important equations in quantum physics must be 

considered: the time-independent Schrödinger Equation, as described in Equation 3.29: 

𝐻j ∣ 𝜓⟩ = 𝐸	 ∣ 𝜓⟩		 

(3.29) 

As can be inferred, Equation 3.29 looks exactly like an eigenvalue equation. The Hamiltonian (𝐻j) 

is a linear transformation on a vector ∣ 𝜓⟩, which results in the same vector scaled by a factor of E 

(eigenvalue). E stands for the energy of the system, which means that the system’s energy can only 

take the values given by this equation. 

3.1.7 Summary 

As described at the beginning of this chapter, linear algebra is the language of quantum mechanics, 

and these sub-sections focused on providing a brief introduction to the concepts that serve as the 

foundation for that language. When applied to quantum computing, this theoretical background 

forms the basis for representing and manipulating quantum states, enabling the development of 

quantum algorithms and computational models. 

The next chapter will focus on the concepts of quantum physics that are required to understand 

quantum computing clearly. The mathematical tools portrayed in this section will be relevant 

throughout the discussion in Section 3.2. 

 
3 See Appendix - Eigenbasis. 
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3.2 Quantum Physics 

After reviewing the fundamental concepts outlined in Section 3.1, this section aims to provide 

background information concerning quantum physics. Continuing the analogy referenced earlier, 

where linear algebra serves as the language for manipulating “quantum” concepts in quantum 

computing, this section deepens into the main concepts of quantum physics (bracket notation, 

entanglement, observables, the uncertainty principle, and probabilities), which are to be explored 

through this same language. 

3.2.1 The Language of Quantum Mechanics 

Before the birth of modern physics, everything could be described using classical models. In 

classical physics, physical quantities are always single-valued and continuous. For example, it is 

impossible to conceive of a car that travels at two different velocities simultaneously (therefore, it 

is single-valued) or one that goes from 0 to 100 km/h instantaneously (therefore, it must be 

continuous). This is why physical quantities in classical mechanics are described using continuous 

and single-valued functions, which could represent the velocity of a car over time, as depicted in 

Figure 3.13: 

Figure 3.13: Example of the Velocity of a Car Over Time 
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However, everything changes when venturing into the world of small physical systems. In the 

early 20th century, the model used to describe an atom was the Rutherford atomic model, which 

established that atoms consisted of a cloud of electrons orbiting a nucleus. When analyzing this 

system using classical mechanics, the electron will release electromagnetic radiation (light) while 

orbiting the nucleus. Since the electron loses energy while doing this, it will rapidly spiral inwards, 

releasing light with higher frequency until it collapses into the nucleus. Therefore, the graph that 

predicts the classical outcome of the system should be single-valued and continuous, as previously 

mentioned.  

This, however, was not the result of the experiment. Instead of continuous light output with 

increasing frequency, only discrete (non-continuous) sets of light were obtained. When the 

experiment was repeated, light was discrete again, but surprisingly, the values were different from 

those of other runs of the same experiment (non-single valued). Therefore, the results seemed to 

suggest that outcomes were not single-valued nor continuous but probabilistic and discrete. Figure 

3.14 portrays a hypothetical example of what the scientists retrieved from their experiments4: 

Figure 3.14: Hypothetical Example of a Quantum System Experiment 

 

This was a total revolution in the way physical quantities were conceived. If the light measured 

was discrete, then light must travel in bundles of energy. Each bundle is known as a photon or a 

 
4 Note that Figure 3.14 exemplifies the discrete nature of quantum mechanics only. In this case, the experiment was 
performed one time only. If the experiment was to be repeated, the values obtained would be different, showing a 
completely different distribution of the points depicted. 
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quantum of the electromagnetic field (the minimum amount of any physical entity). Scientists 

needed a new way to portray these physical phenomena. Thus, quantum mechanics was born. 

Different than classical systems, quantum systems are probabilistic. When measuring a physical 

quantity in an experiment many times, the outcome will be single values that may be different each 

time they are measured (as mentioned before, some outcomes are more likely to occur, so they are 

random but probabilistic). This means that before making a measurement, the particle holds the 

information of all possible states, but when measuring, this superposition of states collapses into 

one single outcome. This is the key that holds the power behind quantum computing.  

Since physical quantities are no longer single-valued and continuous, they cannot be represented 

using functions like in classical mechanics. To mathematically represent the quantum state, all 

possible states and their probabilities must be considered, and the best way to do this is by using 

vectors. For example, a quantum state which is in a superposition of energy states ∣E1⟩, ∣E2⟩... can 

be represented as depicted in Equation 3.30: 

∣ 𝜓⟩ = 𝑐! ∣ 𝐸!⟩ + 𝑐" ∣ 𝐸"⟩ + ⋯ =m𝑐' ∣ 𝐸'⟩
'

	 

(3.30) 

Where the coefficients 𝑐! , 𝑐" ... provide information about the probability of obtaining each 

outcome. If instead of energy measurements, angular momentum was being measured, the same 

state ∣ψ⟩ can be described using a linear combination of possible angular momentum states ∣L1⟩, 

∣L2⟩…etc. See Equation 3.31 below: 

∣ 𝜓⟩ = 𝑐!′ ∣ 𝐿!⟩ + 𝑐"′ ∣ 𝐿"⟩ + ⋯ =m𝑐'′ ∣ 𝐿'⟩
'

 

(3.31) 

Although it might seem counterintuitive, the quantum state expressed in both equations is the same, 

but it is written as a function of different possible measurement parameters (in this case, energy, 

and angular momentum). 

To fix the problems that surged because of the Rutherford atom model, Bohr proposed a new 

atomic model in 1913 that included quantized electron orbits: they orbit the nucleus, but only at 
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certain distances. The possible orbits are given by the energy of the atom, which, as explained 

earlier, is discrete. Hence, the orbits must also be discrete.  

However, is everything in quantum physics discrete? The answer is no. The electron cannot be in 

between orbits, as it automatically jumps from one to another when there is a change in energy. 

But nothing is stopping it from taking any position within the same orbit. Some physical properties 

can be discrete or continuous, depending on the quantum system at hand. Next, an example of 

continuous states to visualize how they function is presented. When representing a state given by 

a superposition of position, a discrete sum (∑) cannot be used because there are no discrete values 

of position (represented with the letter x). The correct mathematical tool for this is the integral, 

which is the sum of a continuous set. Therefore, the integral represents the superposition of all 

individual position states. In this case, each continuous value also has a probability value 

associated, so the final expression for the quantum state is expressed through Equation 3.32: 

∣ 𝜓⟩ = p𝑑𝑥	𝜓(𝑥)	 ∣ 𝑥⟩	 

(3.32) 

In this scenario, ∣x⟩ are all the possible position states, and ψ(x) is related to the probability of each 

position state. As can be seen, the expressions for discrete and continuous variables are remarkably 

similar. It is possible to sum (in the case of discrete variables through conventional summation and 

in the case of continuous variables through an integral) the possible states multiplied by a 

coefficient related to the probability of measuring each state. In fact, Ψ (x) is called the position 

wavefunction, which provides the probability of measuring any position value.  

3.2.2 Bra-ket Notation 

As you may have noticed, the way vectors are notated in quantum mechanics is different than in 

mathematics. Why are these brackets used instead of the arrow on top for vectors? If it is a vector, 

how does the arrow look in this case? Why are functions sometimes used instead of real numbers? 

Vectors are indeed used in quantum mechanics, but they are not within the same vectorial space 

that has been reviewed in Section 3.1.1 (arrows in three dimensions). “Quantum vectors” lie in an 

abstract mathematical space called a Hilbert space (Nielsen & Chuang, 2010, p. 66). A ket (known 

as ∣ψ⟩) is a mathematical object that represents a quantum state, and it can be a vector or a function. 
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A particle’s spin state can be represented through ∣ 𝜑⟩ = %10)	, which is a vector. But, to represent 

a wavefunction, it can be done through ∣ 𝜓⟩ = 𝑓(𝑟	, 𝑡). Both ways of portraying the quantum state 

are valid. 

It is fundamental to understand that a ket’s coefficient can be imaginary numbers5. An imaginary 

number contains the number 𝑖 = √−1, and they can be expressed in the form 𝑧 = 𝑎 + 𝑖 · 𝑏	. As 

explained in the appendix, "𝑎"  is the real part of z (a=Re{z}), and "𝑏"  is its imaginary part 

(b=Im{z}). Finally, the conjugate of an imaginary number consists of changing the sign of the 

imaginary part. This is used so that the outcome probability is not negative since multiplying the 

imaginary part of z times itself would result in −𝑏"  (which is a negative probability). By 

multiplying with the complex conjugate, a positive output is ensured. Thus, the conjugate of z 

would be 𝑧∗ = 𝑎 − 𝑖 · 𝑏. 

Given a ket “∣ Φ⟩ = t
1
−𝑖
0
u	,” it can be transformed into its counterpart, the bra “⟨Φ ∣.” To do this, 

the column vector must be converted into a row vector, taking the complex conjugates of every 

coefficient. Thus, the previous ket “∣ Φ⟩” is turned into the bra “⟨Φ ∣= [1	 𝑖	 0].” Merging both 

together outputs a “bracket,” which represents the inner product6 of the two vectors. Given ∣ 𝜓⟩  =

1
𝑎
𝑏
𝑐
3 	𝑎𝑛𝑑  ∣ Φ⟩ = t

𝑑
𝑒
𝑓
u, Equation 3.33 shows this process: 

⟨Φ ∣ Ψ ⟩  = 𝑎 · 𝑑∗ + 𝑏 · 𝑒∗ + 𝑐 · 𝑓∗ 

(3.33) 

Remember that the kets represent the superposition of possible states, so in this case, although ∣ψ⟩ 

is a column vector, it is a linear combination of the possible measured states represented as ∣ 𝜓⟩  =

𝑎 ∣ 𝑋⟩ + 𝑏 ∣ 𝑌⟩ + 𝑐 ∣ 𝑍⟩	. Therefore, the probability of measuring ∣X⟩ is given by |⟨ 𝑋 ∣∣ 𝜓 ⟩|" = 𝑎 ·

𝑎∗. 

 
5 See Appendix – Imaginary and Complex Numbers. 
6 Recall the dot product from Section 3.1.5. 
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3.2.3 Entanglement 

Entanglement is a phenomenon in quantum mechanics where two or more particles become 

correlated in such a way that the state of one particle provides information about the state of the 

other one. Although this may sound counterintuitive for classical physics, there is no independence 

of distant objects in quantum mechanics. 

Picture having a pair of shoes and placing each of them in separate boxes. Then, you send each 

box to opposite ends of the universe, at an enormous distance from each other. If you open one of 

the boxes and find the right shoe, you will automatically know that the other box, despite how far 

it is, contains the left shoe. Quantum entanglement operates on a similar principle to particles. 

Once a particle’s properties have been measured, there is an instantaneous transfer of information 

regarding the other entangled particles without having to measure them, regardless of how distant 

these particles are from each other. Because this example depicts a classical system, the item 

contained in the boxes is already “collapsed” into a state (left or right shoe) once it is placed in the 

box. However, it is fundamental to understand that in a quantum system, the boxes would contain 

a superposition of the left and right shoe until the box is opened. 

Until now, quantum states of single qubits have been expressed through matrixes with two rows 

(representing the possible states: 0 and 1) and 1 column. Dealing with a higher number of qubits 

requires the representation of all possible combinations of states, known as the “basis states.” Basis 

states refer to the possible outcomes that the qubit system might collapse into upon measurement 

(Nielsen & Chuang, 2010, p. 16). For example, for one single qubit, the basis states are ∣ 0⟩ and 

∣ 1⟩. However, for two qubits, the basis states are ∣ 00⟩, ∣ 01⟩, ∣ 10⟩, and ∣ 11⟩. Because both 

qubits can be either 1 or 0 after measurement, in a 2-qubit system, a combination of all possibility 

outcomes is referred to as the “basis states.” Equation 3.34 depicts the matrix representation of the 

basis states of a 2-qubit system: 

∣ 00⟩ = ~

1
0
0
0

� 				 ∣ 01⟩ 	= ~

0
1
0
0

� 			 ∣ 10⟩ 	= ~

0
0
1
0

� 			 ∣ 11⟩ 	= ~

0
0
0
1

� 

(3.34) 
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To represent the combination of two states (that is not a state as described in Equation 3.34), their 

coefficients must be multiplied. This is known as the tensor product, which allows for operations 

with different qubits that exist in different Hilbert spaces. For example, the combined state7 of 

quantum states ∣ 𝑥⟩ and ∣ 𝑦⟩ is given by Equation 3.35: 

	∣ 𝑦𝑥⟩ = ~

𝑦(𝑥(
𝑦!𝑥(
𝑦(𝑥!
𝑦!𝑥!

� 

(3.35) 

The following theoretical approach will provide an intuition of the meaning of entanglement in the 

quantum computing domain. When working with multiple qubits, their structure speaks about their 

behavior. Based on said structure, 2-qubit systems can be classified into two types: 

- Product states: These multi-qubit states can be expressed through a sequence of single-

qubit states. Imagine that the previous states of ∣ 𝑥⟩ and ∣ 𝑦⟩ are to be measured, aiming to 

calculate the probability of the qubit on the left (y) collapsing into 0. The only two possible 

results in the scenario would be if the outcome after measurement is ∣ 00⟩	or ∣ 01⟩ . 

Equation 3.36 portrays this when translated into an algebraic form: 

𝑝)*+,-./0',(∣ 0⟩) = 	𝑝∣23⟩(∣ 00⟩ 	+	𝑝∣23⟩(∣ 01⟩)	

= 	 (𝑦(𝑥()" + (𝑦(𝑥!)"	

= 	𝑦("𝑥(" 	+ 𝑦("𝑥!"	

= 	𝑦("(𝑥(" + 𝑥!")	

= 	𝑦(" 

(3.36) 

In the process of operating from the third step to the final result of Equation 3.36, it can be inferred 

that (𝑥(" + 𝑥!") is, in fact, equal to 1, since it is certain that the right qubit will either collapse into 

0 or 1. Therefore, the probability of the left qubit collapsing into a particular state is independent 

of the other qubit’s coefficients. It can be inferred that product states are agglomerations of single 

 
7 Note the change in order, where X represents the qubit on the left (the first) and Y the one on the right (the 
second). 
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qubit states and can be represented as such. For example, the state ∣ −+⟩ 	= �!
"
(∣ 00⟩	+	∣ 01⟩	−	∣

10⟩	−∣ 11⟩)	refers to a 2-qubit system whose first qubit is in state ∣ +⟩, and the second qubit is in 

state ∣ −⟩. It is possible to arrive at this conclusion by applying the reasoning explained in Equation 

3.36. 

 

- Entangled states: These states cannot be represented as a sequence of single qubits 

because each qubit’s quantum state is dependent on the other, known as entanglement. For 

example, consider the state ∣ 𝛷5⟩ 	= 	�!
"
(∣ 00⟩	+∣ 11⟩). To calculate the probability of 

this state collapsing into 0, there is only one possible outcome: both qubits collapsing into 

∣ 00⟩. Hence, if after measuring the left qubit, the output is 0 (collapsing ∣ 𝛷5⟩	 into the 

state 	∣ 00⟩), it can be concluded with a 100% probability that once the right qubit is 

measured, the output will be 0. Therefore, when working with entangled states, measuring 

a qubit will directly affect the outcome of the other qubit. Unlike product states, where the 

qubit’s probability of collapsing into a particular state is completely independent of the 

other qubit’s coefficients, entangled states are dependent on their entangled pair.  

3.2.4 Observables 

As previously mentioned, a quantum state can have several distinctive characteristics (energy, 

angular momentum, position, etc.). However, they are all represented through the wavefunction ∣

𝜓⟩. Observables are the tools that enable the retrieval of one of these characteristics from the 

wavefunction. They work as filters that will only output information about said characteristics. For 

example, when using the “energy filter” on ∣ 𝜓⟩, it will only retrieve the information about ∣ 𝜓⟩ 

concerning energy. But how is it possible to mathematically describe them? In previous points, 

how a quantum state can be in a superposition of many possible values of a physical quantity was 

discussed. Consider a state that can take four possible energy values: E1 with an associated vector 

state ∣E1⟩, E2 with a vector ∣E2⟩, etc. These are called definite states because if the quantum state 

was, for example, ∣E4⟩, it is known that the energy of the state is E4 with a 100% probability. 

Therefore, a list of kets and their associated values can be created. With this information, it is 

possible to construct a mathematical object that represents the desired physical quantity.  
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As reviewed in Section 3.1.3, a linear transformation (also known as an “operator” in quantum 

mechanics) can have eigenvectors and their corresponding eigenvalues associated with it. 

Therefore, physical values can be described as operators, known as observables. For example, the 

energy can be represented as the energy operator Ê, which may have definite eigenvectors and 

eigenvalues, meaning discrete values of energy. 

The possible measurable quantum states are given by the eigenstates of the observable, so all the 

possible superposition states must be given by a linear combination of those states. Since each 

eigenvector has a different eigenvalue (the measured quantity), each eigenvector must be 

independent from all other eigenvectors. This means that since you can represent any possible 

quantum state with the eigenvectors of the observable and since those eigenvectors are independent 

(therefore orthonormal, so their dot product will be 0), they form an eigenbasis. Going back to the 

example state with four possible energy states, as shown in Equation 3.37: 

∣ 𝜓⟩ = 𝑎 ∣ 𝐸1⟩ + 𝑏 ∣ 𝐸2⟩ + 𝑐 ∣ 𝐸3⟩ + 𝑑 ∣ 𝐸4⟩	 

(3.37) 

Imagine the energy of the state is measured, and the value E3 is the output. What would the 

quantum state be after the measurement? Since there is one single definite eigenvalue, the state 

must be the eigenvector associated with that eigenvalue and cannot be in a superposition of states. 

This means that after the measurement, the state will be ∣ψ⟩= ∣E3⟩, which is equivalent to projecting 

the quantum state onto the definite measured state. This is called quantum state collapse or collapse 

of the wavefunction. 

3.2.5 The Uncertainty Principle 

In quantum mechanics, the uncertainty principle describes how accurately two observables can be 

measured at the same time. To understand this matter, a new concept must be introduced: the 

commutator.  

Two observables, for example, Â and B̂8, commute if ÂB̂=B̂Â. This means that the outcomes of 

measuring Â first and then B̂ will be the same as changing the order of measurements (this might 

 
8 This “triangle hat” denotes that the object refers to a linear transformation. 
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seem trivial, but it is not always the case). Therefore, the commutator can be introduced as 

described in Equation 3.38: 

�𝐴�, 𝐵�� = 𝐴�𝐵� − 𝐵�𝐴� 

(3.38) 

If the commutator is 0, then the observables commute, and if it is different than 0, then changing 

the order of measurements means changing the outcome of those measurements. It can be proven 

that if two observables commute, then they share the same eigenbasis. Take the example of a 

system in which energy and angular momentum commute: [Ê, L̂] = 0. Since they commute, they 

share an eigenbasis formed by the vectors ∣1⟩, ∣2⟩, ∣3⟩... Remember that each of these vectors 

represents a measured state: for example, the state ∣1⟩ is the state corresponding to measuring E1 

energy (its eigenvalue for energy), but it also corresponds to measuring L1 for angular momentum. 

Equation 3.39 shows the possible quantum state: 

∣ 𝜓⟩ = 𝑐1 ∣ 1⟩ + 𝑐2 ∣ 2⟩ + 𝑐3 ∣ 3⟩ + ⋯ 	 

(3.39) 

So, picture measuring energy for this system and obtaining the value E3, which means that the 

value for angular momentum will be L3. But what if L and E do not commute? In that case, they 

will not be sharing an eigenbasis, meaning that for each value of energy measured, there can be 

more than one possible angular momentum state. Imagine that the value E2 is measured. After 

measuring the state, it will collapse into ∣E2⟩, which is a definite state of energy but not of angular 

momentum (although it will still be in a momentum superposition). So, ∣E2⟩ can be described as a 

combination of possible momentum states (see Equation 3.40 below): 

∣ 𝐸2⟩ = 𝑐1 ∣ 𝐿1⟩ + 𝑐2 ∣ 𝐿2⟩ + ⋯ 	 

(3.40) 

The momentum of the collapsed system can indeed be measured, but it would mean collapsing it 

again into a momentum state, which means having a superposition of energy states. As it can be 

inferred, if two observables do not commute, it means that it is impossible to know the value 
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measured by both observables with absolute certainty. The most famous example of this is 

Heisenberg's uncertainty principle, depicted in Equation 3.41: 

Δ𝑥 · Δ𝑝 ≥
ℏ
2 

(3.41) 

This equation states that the position and linear momentum of a quantum particle cannot be 

measured at the same time, but this comes from the expression of the commutator of these two 

observables, shown in Equation 3.42, Where ħ is a quantum constant, and Δ is the statistical 

dispersion: 

[𝑥W, �̂�] = 𝑖ℏ ≠ 0 

(3.42) 

The dispersion is the size of the range of measurements of position and momentum, respectively. 

A lower position dispersion (meaning lower range, thus more accurate measurement) results in a 

higher momentum dispersion (less accurate momentum measurement). 

3.2.6 Probability and the Bloch Sphere 

Probability enables the assessment of event likelihoods, such as coin flips or card games, allowing 

for the quantification of their occurrence. But does probability work the same way for classical 

and quantum systems? Picture two coins: a normal coin and a “quantum” coin. Would their 

probability be so different? The answer is quite “quantum:” Yes, but also no. Although their final 

probability is the same (50-50%), the roadmap used to arrive at this probability is different. But 

why are different roadmaps being used? The answer lies behind imaginary numbers. Probabilities 

in quantum systems are related to the coefficients of their possible states. For example, in state ∣

𝐴⟩ 	= 	𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩ , 𝛼  and 𝛽  are the coefficients for states 0 and 1. The key is that these 

coefficients are often expressed with imaginary numbers, unlike in classical physics (Zwiebach, 

2022). A complex number9 can be described in the complex plane. For example, Figure 3.15 shows 

the complex number 𝑧 = 	5 + 3𝑖: 

 
9 See Appendix – Imaginary and Complex Numbers. 
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Figure 3.15: Complex Number in the Complex Plane 

 

As can be inferred from Figure 3.15, any complex number has a length A and phase ϕ in the 

complex plane. Phase is related to the direction in the complex plane. Therefore, if it is possible to 

use imaginary and complex numbers to describe probabilities in quantum systems, this means that 

𝛼  and 𝛽  must also have an amplitude and phase. Although it may sound counter-intuitive, 

coefficients in quantum mechanics have directions, and they play a huge role in quantum 

computing, as will be discussed in the following chapters. This is because, when adding or 

subtracting these coefficients, their phase can cancel out (if they point toward different directions). 

This behavior is known as interference in quantum mechanics. In quantum computing, it is 

accepted to use the term “amplitude” for the complex numbers 𝛼 and 𝛽, and the term “magnitude” 

for their absolute value, which, once they are squared, provides the probability of that state. 

However, it is fundamental to understand that the amplitude of the quantum system’s coefficient 

(how large it is), although related to the probability, does not describe the probability itself. But 

what is their relation? This is what Max Born studied, creating the famous Born Rule, which states 

that the square of the coefficients (if they are real numbers10) is, in fact, the probability (Schlatter, 

2017).  

To visualize what was explained above, Felix Bloch came up with a great idea in 1946, which was 

later graphically represented by Feymann, giving birth to what is now known as the Bloch Sphere 

 
10 If they are imaginary or complex numbers, the coefficient will be multiplied by its complex conjugate. 
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(Bloch, 1946; Feynman et al., 1957). This visual tool, represented in Figure 3.16 below, allows for 

the geometrical description of a qubit’s quantum state: 

Figure 3.16: Bloch Sphere 

 

The state denoted by this sphere is described by a vector in a 3-dimensional space, given by ∣ 𝜓⟩ 

in Figure 3.16. This vector will be a superposition of states ∣ 0⟩ and ∣ 1⟩, but the total probability 

of the system must be 1. Therefore, the length of the vector representing the state of the qubit (the 

radius of the sphere) will always be 1. The angle 𝜃 represents the probability of our state being 0 

or 1. The closer the vector is pointing towards 0, the more likely it is to collapse into 0 when the 

qubit is measured, and vice versa. Besides, the angle 𝜑 represents the difference in phase between 

both coefficients of our state.  

Because these concepts can be rather challenging, the sphere of planet Earth can be used as a 

metaphor for the Bloch Sphere to understand each variable in play. In Figure 3.17 below, the 

quantum state is denoted by ∣ 𝑆𝑐𝑜𝑡𝑙𝑎𝑛𝑑⟩ because our quantum state vector points towards this 

region. This country has two properties that provide details about its position on Earth: Latitude 

and longitude. As in any world map, the Bloch sphere describes two fundamental properties of our 

quantum state as well. The latitude represents the probability of measuring 0 and 1 (𝜃), while the 

longitude is the difference in phase between both coefficients of our state (𝜑). In simple words, if 

our quantum state’s “country” is in a colder region, it will be more likely to collapse into 0 or 1. 

In contrast, if our country is closer to the equator, it will be a total superposition (50-50%) between 
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0 and 1. On a different note, the difference in phase of our quantum state is given by the time zone 

of our country. 

Figure 3.17: Bloch Sphere Analogy 

 

In the example of quantum state ∣ 𝑆𝑐𝑜𝑡𝑙𝑎𝑛𝑑⟩, it is more likely to collapse into 0 because its latitude 

is closer to the north pole. Besides, if the prime meridian is time zone 1, and it is assigned to the 

start of our sphere, this example has phase 0. Hence, both coefficients of ∣ 𝑆𝑐𝑜𝑡𝑙𝑎𝑛𝑑⟩ have the 

same phase because their subtraction is equal to 0. 

3.2.7 Summary 

This section has briefly introduced the main topics of quantum physics required for the 

understanding of quantum computing. From bracket notation to entanglement, observables, the 

uncertainty principle, and probabilities, all these concepts will be of crucial importance throughout 

the discussions offered in this thesis. 

The following chapter focuses on the implementation of basic quantum computing techniques 

through qiskit, an environment offered by IBM to perform quantum computational tasks on actual 

quantum hardware on the cloud. 

3.3 Quantum Programming with Qiskit 

This section will deepen the programming knowledge required to engage with IBM’s quantum 

computing devices. This will be done through qiskit, an open-source quantum computing software 
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development framework created by IBM. Qiskit was designed by researchers to allow users to 

interact with IBM’s quantum computers through a Python-based framework (Qiskit, n.d.). All the 

knowledge concerning quantum programming techniques with qiskit will have its foundations 

based on an educational course developed by IBM, which subdivided the required topics within 

quantum programming into different parts (Quantum Explorers - IBM Quantum Experience, n.d.). 

3.3.1 Qiskit Introduction 

This section covers the fundamentals of qiskit, which will later be applied to the Quantum Machine 

Learning processes performed in the experiments. Through practice, the quantum concepts of 

superposition, entanglement, and interference are reviewed. This section also covers the logic 

behind quantum gates and how to manipulate them using qiskit and the IBM Quantum Platform. 

Finally, through qiskit, this section describes how to combine these quantum gates in order to run 

simple quantum circuits. 

3.3.2 Qiskit Basics 

In classical computing, circuits operate with bits through computing gates to obtain results. This 

same procedure is followed in quantum computing. Qiskit allows for the creation and usage of 

quantum circuits, which are models that represent operations being performed on qubits. These 

quantum circuits have the same three jobs that classical circuits perform: Encode the input, operate, 

and extract the output. The only difference is that these inputs, instead of bits, are qubits. Similar 

to bits, qubits are the most basic unit of information in quantum computers, and they have quantum 

properties. Quantum circuit diagrams are used to represent quantum circuits. Figure 3.18 below 

shows an example: 

Figure 3.18: Example of a Quantum Circuit Diagram 
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From this diagram, it can be inferred that there are three distinct stages of the circuit, separated by 

the dotted lines. Inputs are on the left, operations are performed in the middle, and output extraction 

occurs on the right. Each single line preceded by a “q” account for a qubit, starting at index 0. This 

circuit, for example, has four qubits. The double line at the bottom preceded by a “c” specifies the 

number of classical bits of the quantum circuit. Note that the number next to the “c” determines 

the number of bits, not the number of “double lines.” But why are classical bits required in a 

quantum circuit? They determine the value of a qubit once it is measured. In quantum circuits, bits 

are also indexed starting at 0. 

To start developing quantum circuits with qiskit, you can find several tools in the IBM Quantum 

Platform (IBM Quantum, n.d.). In the “learning” section, click on the “IBM Quantum Lab” option. 

This is directed to a Jupyter notebook where the qiskit code can be run. Several important practices 

and techniques are required to understand how to interact with IBM’s quantum computers through 

qiskit. 

To create a quantum circuit, the number of qubits and bits needed must be specified first. To do 

so, import the QuantumCircuit item from the qiskit library, which will allow for the creation of a 

QuantumCircuit class with, for example, two qubits and two bits. By using the draw method, 

create a diagram of the circuit, now encapsulated in the variable qc. See Figure 3.19: 

Figure 3.19: Creating a Quantum Circuit 

 

The measure method is used to measure the circuit’s qubits, recording their results into the circuit’s 

bits. Therefore, each qubit needs to be assigned to a bit of the quantum circuit. The first element 
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of the measure function should be an array of the qubits to be measured, and the second element 

an array of the bits they will be assigned to, as shown in Figure 3.20: 

 

 

 

 

 

 

For smaller circuits of less than 30 qubits, simulating a quantum computer can be beneficial in 

terms of computational power. That is why the AerSimulator is used to run certain circuits. For 

larger circuits, or if the user desires to run the quantum circuit on an actual quantum device, it is 

possible to use an IBM Quantum account. Figure 3.21 below imports the IBMQ module, which 

allows to connect to the IBM Quantum Experience. The save_account method authenticates the 

access to IBM’s devices by passing the token assigned to the user account. The load_account 

function is used to permit access to the quantum devices and simulators. 

Figure 3.21: Access to IBM Quantum Experience 

 

The code shown in Figure 3.22 creates QiskitRuntimeService instance that allows the user to 

connect to the hardware available through the token assigned to your IBM Quantum account. Once 

that is done, the backend is selected, with the parameter “simulator” set to false11. In this case, the 

quantum hardware set as the backend is “ibm_brisbane.” As previously mentioned, quantum 

 
11 This version of the code will output the “least busy” hardware available. 

Figure 3.20: Measuring Qubits 
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computing (and, therefore, quantum circuits) works with probabilities. Hence, these circuits must 

be run several times to record the most probable outcomes. 

Figure 3.22: Backend Connection 

 

Figure 3.23 below shows the creation of an AerSimulator object stored in the variable sim after 

importing the AerSimulator class. Using this variable, the run method simulates the circuit in a 

quantum computer simulation. Next, the results are stored using the result method. Finally, the 

get_counts function provides a visualization of the results, which will output the results in a 

dictionary. When designing circuits, all qubits start having a value of 0. In this case, the circuit did 

not contain any input encoding or gates, and it was run 1024 times. Therefore, all 1024 times 

measured 0 for both qubits. 

 

Figure 3.23: Aer Simulator Example 
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There is also an interactive way to manipulate quantum circuits besides raw programming with 

qiskit. In the “learning” section of the IBM Quantum Platform, find the Quantum Composer, which 

allows you to graphically build circuits. Figure 3.24 is an example of how a circuit is built by using 

the IBM Quantum Composer:  

Figure 3.24: IBM Quantum Composer 

 

 

In the top left corner, the application shows the different operations that can be performed on the 

circuit’s qubits. The top middle section is the composer, where the qubit operations can be dragged 

and dropped. You can add or delete qubits by clicking on the “q’s.” Follow the same procedure 

with the “c” to add bits. The left menu will translate whatever is built on the composer to code. 

The visuals displayed at the bottom provide insights into the possible outcomes of the circuit. As 

circuits get more complex, the “Quantum Composer” is truly a valuable tool since it makes the 

quantum circuit design process much quicker and intuitive. 

3.3.3 Quantum Gates 

However, as you may infer, it is sometimes the case that the input is different than 0. This can be 

done by using quantum gates. The behavior of quantum gates can be portrayed through an intuitive 

metaphor previously used12, with Earth as an analogy. When traveling between two different 

countries, a route traces the path connecting both points. This route covers all the necessary turns, 

 
12 See Section 3.2.6 – Probability and the Bloch Sphere. 
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distances, and travel directions required to arrive at the destination. That is exactly the job of a 

quantum gate. They alter the qubit’s state so that the Bloch sphere points towards a different 

direction. Nonetheless, instead of using a GPS, quantum gates are expressed through 

transformation matrixes. By multiplying the input state by the quantum gate’s transformation 

matrix, the resultant state of the qubit13 , which is the encoded input, is obtained. 

3.3.3.1 X Gate 

For example, the X gate flips the value of the qubit in question from 0 to 1 or vice versa by using 

the following matrix as a function (see Equation 3.43): 

𝑋	 = 	 %0 1
1 0) 

(3.43) 

Imagine the qubit is in state ∣ 0⟩. Therefore, the vector state is %10). Picture passing the qubit 

through an X gate; the resultant state of the qubit will be given by the procedure shown in Equation 

3.44: 

%0 1
1 0) %

1
0) 	= 	 -

(0 ∙ 1) + (1 ∙ 0)
(1 ∙ 1) + (0 ∙ 0). 	= 	 %

0
1) 

(3.44) 

Therefore, the transformation matrix of the X gate serves as a roadmap that states where the 

quantum state will land after “traveling” through the X quantum gate. These “trips” are often 

referred to as “rotations of the sphere.” In this case, a rotation of 180° is performed around the X-

axis14. Figure 3.25 shows the “trip” performed by the quantum state, which, in this case, covers 

the distance from the north pole to the south pole (0 to 1). 

Now, it is possible to interact with this quantum gate through qiskit through the following quantum 

circuit. The x method performs the X gate on the qubits comprehended within the parameter, which 

must be represented in an array. Figure 3.26 portrays an example. 

 
13 See Section 3.1.4 – Matrixes. 
14 By convention, these rotations are always counterclockwise. 
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Figure 3.25: X Gate on ∣0⟩ 

 

Figure 3.26: X Gate 

 

Figure 3.27 shows the simulator results after encoding two qubits as 1. Note how the result is “110” 

every time the circuit is run. This is because after measuring a circuit, results are portrayed from 

right to left. Therefore, 𝑞( is stated in the furthest right of the results, 𝑞! in the middle, and 𝑞" in 

the furthest left: 

Figure 3.27: X Gate Simulation. 
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3.3.3.2 Z Gate 

Similarly to the X gate, the Z gate is also used on a single qubit. This gate focuses on changing the 

phase of the qubit input through a rotation of 180° around the Z axis. Therefore, in this analogy, 

the itinerary set by the Z gate describes a route perpendicular to the equator without any movement 

in the north-south component. The Z gate is described by the following transformation matrix of 

Equation 3.45: 

𝑍	 = 	 %1 0
0 −1) 

(3.45) 

Note that if the input qubit is in states ∣ 0⟩ or ∣ 1⟩ the Z gate will not have any effect on the resultant 

state of the qubit. When performing the same mathematical procedure as before, the outcome is 

that the quantum state does not change. This process can be understood by considering that the 

vector states of ∣ 0⟩ and ∣ 1⟩ lie within the Z axis. This means that they do not have any component 

in the X and Y axes. Consequently, applying the Z gate brings no change in the resultant state 

vector. Figure 3.28 below describes the effect of the Z gate on a quantum state ∣ 𝑊⟩. 

Figure 3.28: Z Gate on ∣W⟩ 

 

In qiskit, the z method implements a Z gate on a qubit, as shown in Figure 3.29. However, the 

nature of this gate will not affect the probability of the qubit collapsing into 0 or 1. Instead, it 

influences the phase of the qubit, as previously stated. This feature can be highly valuable when 

manipulating several qubits at the same time, as will be seen in future sections. 
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Figure 3.29: Z Gate 

 

3.3.3.3 H Gate 

All the operations performed on the bits so far are deterministic. This means, there is no 

randomness associated with the operation itself. However, randomness and probability are 

fundamental characteristics of quantum mechanics. Therefore, qubits take advantage of these 

properties to work with probabilities. 

Nonetheless, an important question is how to interact with a qubit’s probability. Examine the 

behavior of the most famous probabilistic gate in quantum computing: The H gate. This 

transformation matrix accounts for a rotation of the Y axis of 90° followed by a rotation of the X 

axis of 180°, described in Equation 3.46: 

𝐻	 = 	
1
√2

%1 1
1 −1) 

(3.46) 

When applying the Hadamard gate to a qubit in state ∣ 0⟩, it will transform the Bloch sphere as 
follows15 (see Figure 3.30): 

 
15 After the Y axis rotation, the X axis rotation does not affect the state, because the vector state is part of the 
rotating axis. Therefore, there is no change after the X rotation is applied. 
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Figure 3.30 suggests that the H gate splits the probability of measuring 0 and 1 into 50-50%16. This 

can lead to believing that the H gate just randomizes the output of the qubit, but this is an incorrect 

assumption. As it can be inferred from Figure 3.31 below, when the input is in state ∣ 1⟩, although 

the probability is split evenly as well, the phase is different from the result from Figure 3.31. This 

is because after applying the same “plane itinerary” but departing from various locations, the final 

destination is different: 

Figure 3.31: H Gate on ∣1⟩ 

 

 

 
16 Note that what is stated in Figure 3.30 are the quantum state’s coefficients. To retrieve their probability, square 
such coefficient. 

Figure 3.30: H Gate on ∣0⟩ 
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Figure 3.32 shows how the H gate includes a phase change, which can be determined when 

applying multiple gates in a row. In fact, after applying two H gates consequently, there is no 

change in the output because the rotations will cancel each other out: 

Figure 3.32: Consecutive H Gates on ∣0⟩ 

 

Figure 3.33 portrays the measurement and consequent results of applying the Hadamard gate on a 

single qubit, utilizing the same methods previously used with the X gate combined with the method 

h: 

Figure 3.33: H Gate 

 

The outcome shows an even distribution of 0 and 1, suggesting that every time the circuit was run 

(1024 times), the qubit had a 50-50% probability of collapsing into both possible values (See 

Figure 3.34): 
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Figure 3.34: H Gate Simulation 

 

 

 

 

 

 

 

 

 

3.3.4 Qubit Entanglement 

Working with two qubits unleashes the power of entanglement, as reviewed in Section  

3.2.3. Through entanglement, it is possible to manipulate qubits whose value has not yet collapsed 

but whose output is certain. Because entanglement is a multi-qubit property, multi-qubit gates must 

be applied to entangle several qubits. The CNOT and CX gates are foundational examples of multi-

qubit gates. 

3.3.4.1 CNOT Gate 

This gate works on two qubits, the “control” and “target.” If the control qubit is in state ∣ 0⟩, the 

CNOT gate will not perform any operation on the target qubit. Whereas if the control qubit is in 

state ∣ 1⟩, it will perform an X gate on the target qubit. Equation 3.47 portrays the CNOT gate’s 

transformation matrix: 

𝐶𝑁𝑂𝑇	 = ~

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

� 

(3.47) 

Given state ∣ 10⟩, once the CNOT gate is applied, follow the mathematical reasoning to arrive at 

the resultant quantum state (see Equation 3.48 below): 
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~

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

� ~

0
0
1
0

� 	= ~

1(0) 		+ 0(0) 		+ 0(1) 		+ 0(0)
0(0) 		+ 1(0) 		+ 0(1) 		+ 0(0)
0(0) 		+ 0(0) 		+ 0(1) 		+ 1(0)
0(0) 		+ 0(0) 		+ 1(1) 		+ 0(0)

� = ~

0
0
0
1

� 

(3.48) 

As it can be inferred, because the target qubit (on the left) was in state ∣ 1⟩, the target qubit was 

flipped from ∣ 0⟩ to ∣ 1⟩. Similarly, the CNOT gate will convert the state ∣ 11⟩ into ∣ 10⟩. However, 

it will not have any effect with the states ∣ 00⟩ and ∣ 01⟩ because the control qubits are in state ∣

0⟩. In qiskit, as shown in Figure 3.35, utilize the CNOT gate by using the method cx. 

Figure 3.35: CNOT Gate 

 

Figure 3.36 describes the process of simulating the results of circuit qc5. A quantum state encoded 

as ∣ 10⟩, after going through a CNOT gate, will always output the state ∣ 11⟩ every single time the 

circuit is run. 
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Figure 3.36: CNOT Gate Simulation 

 

 

3.3.4.2 CZ Gate 

As with the X and Z gates, the CNOT and CZ gates operate similarly. The CZ gate takes effect by 

applying a Z gate on the control qubit only if the target qubit is in state ∣ 1⟩. Otherwise, it will 

leave it unchanged. Therefore, the transformation matrix of the CZ gate can be formulated as in 

Equation 3.49: 

𝐶𝑍	 = ~

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

� 

(3.49) 

Use the method cz to call the CZ gate in qiskit, as portrayed in Figure 3.37: 
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Figure 3.37: CZ Gate 

 

3.3.4.3 Entangling Qubits 

With the use of the CNOT gate and the CX gate, it is possible to create entangled states. For 

example, Figure 3.38 describes a circuit of two qubits, and an H gate is applied on the first qubit 

(specified in the far right of the bra-ket), leaving the second qubit unchanged in state ∣ 0⟩. Note the 

use of the Statevector item from the qiskit.quantum_info library, which quickly calculates and 

represents the state vector of the quantum state: 

Figure 3.38: Entangling Qubits (1) 
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Therefore, the only two possible resultant states are ∣ 00⟩ and ∣ 01⟩ since the rightmost qubit (the 

first qubit) is the only one that has been altered by the H gate. It is important to remember that this 

representation shows the quantum states’ coefficients, not their probability. As explained in 

Section 3.2.6, it is required to square these coefficients to find the probability of the qubit 

collapsing into said quantum state. Now, the CNOT gate can be applied with the control on the 

first qubit and the target on the second qubit. See Figure 3.39 below: 

Figure 3.39: Entangling Qubits (2) 

 

 

It can be inferred that every time the first qubit is measured and outputs, for example, ∣ 0⟩, the 

CNOT gate will operate on the second qubit, converting it into ∣ 0⟩ as well. However, if the first 

qubit is uncovered as ∣ 1⟩, the CNOT gate will not perform any operation on the second qubit, 

leaving it in state ∣ 1⟩ too. As portrayed by the vector state in Figure 3.40, the only two possible 

states of this circuit after being measured are either ∣ 00⟩ or ∣ 11⟩. Hence, once the value of one of 

the qubits is known, the value of the other one is intuitively known, too. This is the logic followed 

to successfully entangle two qubits by just using two gates through the following quantum circuit: 
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Figure 3.40: Entangling Qubits (3) 

 

This example highlighted how to entangle two qubits, but it is possible to entangle more as far as 

the correct circuit is designed. It has been shown that circuits with more than two qubits can be 

entangled through different circuit configurations. The more qubits in the circuit, the more possible 

configurations to achieve entanglement (Dür et al., 2000; Verstraete et al., 2002) 
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Chapter 4: Experiments and Results 

 
With a clear understanding of qiskit basics and how to utilize quantum gates, it is now possible to 

apply these concepts for QML purposes. This section is divided into three different subsections. 

First, it will discuss the theoretical principles of KQSVM required to understand the experiments, 

which will be discussed later. Following that, the methodology will present the process through 

which the experiments were conducted. Ultimately, the results obtained from such experiments 

will be reviewed. 

4.1 QKSVM Theory 

As mentioned in Chapter 1, the experiments will specifically focus on QKSVM. This subsection 

provides an in-depth understanding of this technique’s background. 

4.1.1 SVM 

SVM is a supervised learning algorithm that focuses on binary classification (Rebentrost et al., 

2013). This means that the algorithm’s goal is to separate the dataset into two classes by comparing 

the similarity between the data points of the dataset. Through an optimization process, SVMs 

output the “decision boundary,” the line that permits the successful categorization of data points 

(Protopapas & Rader, 2018). The vectors lying closer to the hyperplane are called “support vectors,” 

and the distance between support vectors and the hyperplane is denominated “margin” (Figure 4.1). 

Figure 4.1: Example of SVM 
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To create this decision boundary, the algorithm follows an optimization process that maximizes 

the distance between both classes of the dataset while maintaining the least possible number of 

misclassifications (Protopapas & Rader, 2018). This is known as the “widest street” approach 

(Winston, 2010). The power of SVM lies in the fact that they can also be rephrased into linear 

algebra terms, with the inner product as the main concept when calculating the decision boundary 

(Brownlee, 2020). Essentially, once the decision boundary is set, the algorithm defines the “weight 

vector” (“w” in Figure 4.2), which is perpendicular to the decision boundary. It then creates a 

vector from a point within the “w” to the new data point, “M.” This new vector is referred to as 

“u” in Figure 4.2. After calculating the projection of “u” onto “w” (through the dot product), it is 

possible to determine on which side of the decision boundary “M” lands. This projection is 

described by “v” in Figure 4.2. In this example, because “v” falls under the “red” class, M will be 

successfully labeled as “red.” The dot product, therefore, functions as a sort of “similarity score” 

between the data points and the weight vector, a concept that will be fundamental for the 

understanding of quantum kernels in Section 4.1.3 (Schuld, 2019a).  

4.1.2 Kernels 

However, the approach followed by SVMs can be truly challenging when trying to classify a non-

linearly separable dataset. As can be seen, Figure 4.1 is easy to separate through a line, but certain 

datasets cannot be classified linearly. For example, Figure 4.3 shows an example where no line 

will be able to differentiate both classes (red and blue): 

Figure 4.2: SVM Classification of a New Data 
Point 
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Figure 4.3: Non-Linearly Separable Dataset 

 

This sort of case can be dealt with by applying a linear transformation to the points to find whether, 

in a higher dimensional space, these classes can be accurately separated. For example, when 

transforming Figure 4.3’s data points into a three-dimensional space, the data point distribution 

found in Figure 4.4 can be obtained: 

Figure 4.4: Dataset Transformation into 3 Dimensions 

 

As can be inferred, this dataset is easily separable by a 3-dimensional plane, portrayed in Figure 

4.5 below. This decision boundary is also known as a “hyperplane,” and it is the output of the 

SVM after the transformation has taken place (Protopapas & Rader, 2018). 
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Figure 4.5: Hyperplane Separating Both Classes 

 

Nonetheless, there are two main problems with this approach: 

• Finding the characteristics of the linear transformation that allows for hyperplane class 

separation. 

• When dealing with datasets of high complexity, a considerable number of dimensions may 

be required. 

Both challenges can be solved by using the kernel trick (El Khadir, 2022). This concept establishes 

that the algorithm behind SVM does not need to know the position where each data point is mapped 

after the linear transformation, which is a challenging task due to its computationally expensive 

nature (Weinberger, 2018). It is sufficient to know the similarity score provided by the inner 

product (represented through “< >” in Equation 4.1) of both data points in the new space provided 

by the kernel function (Winston, 2010). A kernel function “k” follows the logic portrayed in 

Equation 4.1, given a linear transformation “𝑓(𝑥)” and data points x and x’: 

𝑘(𝑥, 𝑥′) 	=	< 𝑓(𝑥), 𝑓(𝑥′) > 

(4.1) 

This equation states that it is possible to know the similarity score (inner product) of two vectors 

in a higher dimensional space with only three variables: Both data points and the kernel function.  

Different types of kernels can be used to map data points to new feature spaces. The linear kernel 

operates in the original feature space. Referring to Figure 4.1, the decision boundary portrayed in 



68 
 

this graphic example would be what a linear kernel would output. A polynomial kernel of degree 

“d,” nonetheless, maps the data to a higher dimension, depending on the degree “d”17 (Kutzkov, 

2022). The sigmoid kernel operates through the sigmoid function, offering a mapping to a higher 

dimensional space, too (Sitorus, 2020). 

4.1.3 Quantum Kernels 

The kernel trick can serve as the bridge between SVM and quantum computing. To approach this 

idea, it is necessary to understand the concept of “overlap.” This term is referred to as the 

measurement of similarity between two quantum states. For example, picture two quantum states, 

as portrayed in Equation 4.1: 

∣ 𝜓⟩ = 𝑎 ∣ 0⟩ + 𝑏 ∣ 1⟩ 

∣ 𝜓′⟩ = 𝑐 ∣ 0⟩ + 𝑑 ∣ 1⟩ 

(4.2) 

This is calculated through the inner product of both quantum states, known as “fidelity.” Recall 

the concept of the dot product in linear algebra, which projects a vector onto another. In this case, 

fidelity looks at how similar two quantum states are by projecting one onto the other. See Equation 

4.3 below for the calculation of the inner product: 

⟨ 𝜓 ∣∣ 𝜓′ ⟩ = (𝑎∗ ∙ 𝑐) + (𝑏∗ ∙ 𝑑) 

(4.3) 

Essentially, the overlap measures how similar two quantum states are. And as you may recall, that 

is exactly what a kernel performs on data points. To translate data points into quantum states, 

quantum computers use quantum circuits. Using the same quantum circuit, data points are 

converted into quantum states. These quantum states are feature vectors of the new feature space 

(the Hilbert space). Quantum computers can then calculate the quantum states’ inner products 

(overlaps) to efficiently compute the similarity between data points, acting as a “quantum kernel” 

(Schuld, 2019b). Hence, while the classical kernels require a kernel function to compute the inner 

 
17 As it will be shown in the chapter 4, python sets it by default to d = 3 when it is not specified. 
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products, quantum kernels directly compute the inner products in the new feature space. Figure 

4.6 describes the process outlined: 

Figure 4.6: Quantum Kernel Process 

 

4.2 Experiments 

This section of the thesis covers all the information about the process of developing the 

experiments and how they were performed. It deepens into the details of how to load classical data 

into a quantum computer, setting examples of the actual experiments. Furthermore, it explains the 

necessary steps to create a quantum kernel and test it on a quantum simulator. Finally, the results 

of the experiments will be discussed, and the comparison between quantum and classical kernels 

will be analyzed. 

Before starting the discussion concerning the framework of the experiments performed, it is 

fundamental to examine the first experiments conducted throughout the experimental process. 

Before developing this thesis, the aim was to find scenarios where QML can enhance current ML 

processes. That is why the first experiments performed operated with uncomplicated datasets, 

where a classical SVM was utilized before showing robust results in terms of accuracy and other 

performance metrics. Some of the datasets utilized in this first experimentation stage were the 

“iris,” “palmer penguins,” and “breast cancer” datasets. Nonetheless, the results when comparing 

classical and quantum algorithms in these scenarios did not provide any insights concerning 

quantum advantage. The results showed that QSVMs performed equally (if not worse in certain 
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cases) than classical SVMs. In those situations, a QSVM does not seem to enhance the 

performance of a classical SVM.  

In light of these findings, a new different type of dataset had to be found. As previously mentioned, 

this research aimed to show a quantum advantage for certain specific situations, and the answer 

did not seem to hide behind extensively used datasets. As will be explained later, Liu et al. (2021) 

mentioned a theoretical edge of QSVM over classical SVMs for datasets following a DLP 

distribution. Therefore, the experiment design structure pivoted to this novel approach. 

Note that the code used to develop these experiments received support and intuitive guidelines 

from a large language model like ChatGPT, enabling the practical implementation of these 

theoretical concepts (OpenAI, 2023). 

4.2.1 Methodology 

Depending on the classical nature (quantum or classical) of the resources (data and algorithm) of 

the machine learning process, there are four types of techniques that can be applied in QML 

(Dunjko et al., 2016). Figure 4.7 below shows the different options: 

Figure 4.7: QML Scopes 

 

CC (classical-classical) concerns classical data processed by a classical unit, which is the general 

goal of ML. QC (quantum-classical) references quantum data processed by classical algorithms. 

This is denominated “quantum applied ML,” an area still in development. QQ (quantum-quantum) 

refers to quantum data being processed by a quantum algorithm or “Quantum generalized ML,” a 

field currently in ongoing research as well. Finally, CQ (classical-quantum) is a technique that 



71 
 

utilizes quantum algorithms to deal with classical data: “Quantum enhanced ML” (Pira & Ferrie, 

2023). CQ is indeed the field that this thesis focuses on, analyzing whether quantum kernels can 

enhance SVM techniques in classical datasets. 

The CQ technique requires two different elements, nonetheless: A classical dataset and a quantum 

algorithm. The next two subsections will dive into both components. 

4.2.1.1 Discrete Logarithm Problem Dataset 

As Liu, Arunachalam, and Temme (2021) indicated, the DLP supposes a struggle for classical 

algorithms. This mathematical problem is used in cryptography, where messages are encrypted 

using the DLP, for example, in the ElGamal encryption scheme (Menezes et al., 2020, p. 297). 

Essentially, the DLP involves finding the exponent “𝑥” to which a given generator “𝑔” must be 

raised to be congruent with a specific element within a finite cyclic group “𝑠” modulo “𝑝,” where 

“𝑝” is a prime number (Galaviz, 2021; Trevisan, 2012). This relationship is described in Equation 

4.4: 

 

𝐺𝑖𝑣𝑒𝑛	𝑔, 𝑝, 𝑎𝑛𝑑	𝑠, 𝑓𝑖𝑛𝑑	𝑥: 

	𝑔3 ≡ 𝑠	(𝑚𝑜𝑑	𝑝) 

(4.4) 

In the paper “A rigorous and robust quantum speed-up in supervised machine learning,” a concept 

class is formulated so that a KQSVM can aim at classifying a DLP dataset (Liu et al., 2021). To 

perform the experiments, this thesis followed the same concept class to generate a DLP dataset 

through the following steps: 

1. Selecting a prime number 𝑝 and a generator (primitive root) 𝑔. 

2. Randomly selecting an integer 𝑠 for the set {0,1, … , 𝑝 − 2}. 

3. For 𝑀 data samples: 

o Randomly select an integer 𝑧 from set {0,1, … , 𝑝 − 2}. 

o Store data points (𝑧, 1) or (𝑧, −1) depending on: 

§ If 𝑧 is in the range [𝑠, 𝑠 + 6-%
"
], then label 1. 
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§ If not, then label -1. 

o Calculate 𝑥 = 	𝑔7	𝑚𝑜𝑑	𝑝. 

o Associate 𝑥 with the label obtained. 

Note that for this thesis’ experimental analysis 𝑀 = 300. This is due to the limitations imposed 

by IBM’s servers, which did not permit handling computations involving datasets with a higher 

number of data points. 

4.2.1.2 Experimental Design 

Several variables and procedures were considered to perform a successful empirical analysis of 

how a quantum kernel can classify a DLP dataset compared to classical kernels. 

First, three different DLP datasets were generated following the process outlined in Section 4.2.1.1. 

These datasets were derived from different prime numbers: small (64 bits), medium (512 bits), and 

large (1024 bits). Despite the attempt to increase the prime number’s magnitude beyond 1024 bits, 

IBM’s servers now allowed the manipulation of a dataset of such dimensions. 

Then, for each of the three datasets, 25 different runs were performed. For each run, a different 

train-test seed was chosen. This allows for a change in the configuration of the records selected to 

be part of the train and test groups, which helps in understanding whether the models’ 

performances are consistent and stable based on the data split. 

Finally, the experiments involved the utilization of three classical kernels (linear, polynomial, and 

sigmoid) alongside a quantum kernel. This allows for a comparison between the conventional 

classical options and the alternative offered by quantum computing in terms of kernelized SVMs. 

4.2.1.2.1 Data Encoding 

Before proceeding with the creation of a quantum kernel, there is one fundamental step to perform: 

Data encoding. This process is about translating classical data into a quantum computer. There are 

several suggested methods for data encoding, and each is used for diverse tasks (Ganguly, 2021, 

p. 216). This thesis will focus on “Basis Encoding” through the ZZFeatureMap quantum circuit 

found in qiskit. 

Basis encoding focuses on assigning classical input (data points) into basis states. Recall the 

discussion about basis states from Section 3.2.3. For a 2-qubit system, the basis states are ∣ 00⟩, 
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∣ 01⟩, ∣ 10⟩, and ∣ 11⟩. Basis encoding allows for the translation of four data points into quantum 

states with this system, one for each basis state. Given data points 𝑥!, 𝑥", 𝑥%, and 𝑥8, they must be 

first transformed into a binary representation such that 𝑥! = 00, 𝑥" = 01, 	𝑥% = 10, and 𝑥8 = 11. 

Then, basis encoding creates a circuit to associate each binary form with its respective basis state. 

In this case, after a successful data encoding process, 𝑥! =∣ 00⟩, 𝑥" =∣ 01⟩, 	𝑥% =∣ 10⟩, and 𝑥8 =

∣ 11⟩. 

The ZZFeatureMap quantum circuit is designed to transform data into quantum states that a 

quantum computer can interpret. It utilizes a second-order Pauli-Z evolution circuit and several 

parameters that allow the user to personalize the circuit’s features (IBM Quantum Documentation, 

n.d.). Figure 4.8 shows an example of a ZZFeatureMap circuit composed of four qubits, linear 

entanglement, and one repetition. As can be seen, the ZZ FeatureMap utilizes several gates 

reviewed in Section 3.3, like the H-gate and the CNOT-gate. Moreover, the purple gates are 

operations performed on the unique features of the dataset, which, together with the rest of the 

gates, will transform them into quantum states. 

 

4.2.1.2.2 Quantum Kernel Implementation 

This subsection revises the necessary process to implement a KQSVM on qiskit for the dataset 

specified before. As shown in Figure 4.9, variables are separated into features (𝑥, 𝑧, 𝑠) and labels 

(label). The dataset is then split through sklearn’s train_test_split method, 80% test and 20% train. 

Figure 4.8: ZZFeatureMap 
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Figure 4.9: Train-Test Split 

 

The dataset is then scaled using the MinMaxScaler method from sklearn, which allows for easier 

handling of the data points during the training process. In this case, the data points were scaled to 

numbers between -1 and 1, as shown in Figure 4.10. 

Figure 4.10: Dataset Scale 

 

Then, the process shown in Section 3.3.2 is followed to connect to an available backend that will 

perform the computational task. In this case, through a QiskitRuntimeService instance, the 

‘ibm_qasm_simulator’ quantum computer simulator was chosen, as shown in Figure 4.11: 

Figure 4.11: Backend Connection 
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The next step consists of importing all the necessary packages required in the process of building 

a KQSVM, as described in Figure 4.12. They will be used for the following purposes: 

• Session and Sampler classes from qiskit_ibm_runtime: Provide a connection to the 

IBM Runtime service (sampler), and sample measurements from quantum circuits 

(sampler). 

• ComputeUncompute class from qiskit_algorithms.state_fidelities: Used to measure 

the state fidelity (inner product) between two quantum states. 

• ZZFeatureMap class from qiskit.circuit.library: Quantum circuit used for feature map 

encoding. As portrayed in Section 4.2.1.2.1, it operates by encoding data points into 

quantum states. 

• FidelityQuantumKernel class from qiskit_machine_learning.kernels: Kernel class 

that leverages the fidelity algorithm. 

• generate_preset_pass_manager class from qiskit.transpiler.preset_passmanagers: 

Used for circuit transpiration. This is used to optimize the quantum circuit before it 

executes, matching the topology of the quantum device. 

• QSVC class from qiskit_machine_learning.algorithms: Quantum version of the 

classical SVM algorithm. 

• classification_report and confusion_matrix classes from sklearn.metrics: To measure 

the performance of the different algorithms. 

• matplotlib.pyplot and seaborn: To perform visualizations out of the performance 

measurements. 

• time: To compute training time. 

Figure 4.12: Necessary Packages for KQSVM 
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Then, with a Session class open, where the service and backend previously assigned are provided, 

the process of creating a quantum kernel begins. First, create a new quantum kernel with the 

ComputeUncompute class and the Sampler class as a parameter. This will allow the quantum 

kernel to compute the inner products required to measure the similarity between data points. Then, 

the ZZFeatureMap class allows for the creation of a quantum circuit (in this case, the 

ZZFeatureMap quantum circuit) that will be used as data encoding for the DLP dataset data points. 

The parameters of the ZZFeatureMap include “feature_dimensions” (the number of features in 

the dataset, which will be the number of qubits required in the quantum circuit), “reps” (the number 

of repetitions of the circuit), “entanglement” (the type of entanglement desired in the circuit), and 

“insert_barriers” (whether if the user desires to separate between layers). The 

generate_preset_pass_manager class sets a transpiler for the quantum circuit after setting the 

“optimization_level” required and the “target” backend as parameters. Once the quantum circuit 

is transpiled, the quantum kernel is finally defined through the FidelityQuantumKernel class. The 

parameters required for this class are “feature_map” (the transpiled quantum circuit variable) and 

the “fidelity” variable. Figure 4.13 below shows the process outlined: 

Figure 4.13: Quantum Kernel 

 

As portrayed in Figure 4.14, to create the QSVM algorithm, pass the QSVC class with the quantum 

kernel defined before as the “quantum_kernel” parameter. Then, the method fit will start training 

the KQSVM algorithm with the training data points of the DLP dataset. In this case, the module 

time was used to record the algorithm’s training time. 
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Figure 4.14: Quantum Support Vector Machine 

 

Figure 4.15 below shows the process of recording the results of the algorithm after it has been 

trained. By using the predict, confusion_matrix, classification_report, and visualization tools 

obtained from pyplot and seaborn, it is possible to successfully retrieve the performance measures 

of the KQSVM.  

Figure 4.15: Confusion Matrix 
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The outcome is shown in Figure 4.16. As can be inferred, the training process of the KQSVM took 

2139 seconds. Moreover, the performance measurements were 93% accuracy, 94 % precision, 

94 % recall, and 94 % F1 score. This is an example of a real experiment performed during the 

development of this thesis. 

Figure 4.16: Example of KQSVM Performance 

 

4.3 Results 

This section describes the results obtained from the experiments performed, given the experimental 

design previously outlined. It will first examine the performance of the algorithms for each of the 

three datasets throughout all performance metrics (accuracy, precision, recall, and F1 score). Then, 

it will emphasize the accuracy score as the DLP dataset increases the prime number on which it is 

based. Finally, it will focus on the quantum kernel performance. The visualizations developed for 

this section are a result of calculating the average of the algorithms’ performance for each dataset 

and performance metric. In total, 1200 data points were collected from the experiments (four 

algorithms, three datasets, 25 seeds, and four performance metrics). 
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Figure 4.17 shows how the QKSVM outperformed its classical counterparts with a score of around 

80% throughout all performance metrics for the DLP-64 dataset. The linear kernel was the highest 

scorer among the classical kernels. 

Figure 4.17: DLP-64 Dataset 

 

For the DLP-512 dataset, Figure 4.18 shows an improvement in the quantum kernel for all 

performance metrics, with all scores close to 90%. However, all classical algorithms continued 

with the same tendency of 60%-75% for all performance metrics. It is possible to notice a spike 

among all classical kernels for the recall measure, with the polynomial kernel scoring close to 99% 

on average. This suggests that classical kernels for this dataset seem to be better at identifying 

actual positive samples. However, although recall for classical kernels performs relatively high (in 

the case of polynomial even surpassing the quantum kernel, while the linear and sigmoid kernels 

are significantly poorer), the precision and accuracy scores are undoubtedly lower (50%-60%) for 

all classical kernels. Although the classical kernels correctly classify DLP-distribution data points, 

they return more irrelevant than relevant results. This suggests that classical kernels categorize 

DLP distribution to most data points, although not all follow that distribution. 
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Figure 4.18: DLP-512 Dataset 

 

Figure 4.19: DLP- 1024 Dataset 



81 
 

The DLP-1024 dataset, as portrayed in Figure 4.19, has a similar performance as the DLP-512 

dataset. The quantum kernel continues to outperform the classical kernels in all performance 

metrics, with a score close to 90%. Classical kernels have a higher score for recall again, with the 

polynomial kernel peaking at 90% (same as the quantum kernel). Nonetheless, as with the DLP-

512 dataset, accuracy and precision are much lower than recall. As explained before, this behavior 

means that the model is classifying all data points as DLP-distributed data points, although they 

are all not. 

When looking at the accuracy performance throughout all datasets in Figure 4.20, the quantum 

kernel exceeds the scores of the classical kernels. As the prime number grows, the quantum kernel 

seems to perform better, with an accuracy of almost 90%. Meanwhile, classical datasets always 

scored 71% in accuracy or less. The regular linear kernel scored around 70 % for the DLP-64 and 

DLP-1024 datasets, but besides that, the rest of the accuracy scores were between 50% and 60%.  

Figure 4.20: Accuracy Across Datasets 

 

Taking a closer look at the performance of the quantum kernel, Figure 4.21 shows that the quantum 

kernel performed better for the DLP-512 and DLP-1024 datasets (around 90% for all metrics) 

compared to the DLP-64 (around 80%). In any case, all performance indicators have an average 

of 80% and 90% for the experiments performed. This behavior suggests a robust KQSVM. 
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Figure 4.21: Quantum Kernel Performance 

 

In summary, the experiments performed were successful in determining that quantum kernels 

perform better than classical kernels in DLP-distributed datasets. The difference in accuracy 

between classical and quantum algorithms can range between 10-30%, with the quantum version 

outperforming the classical one. Besides, as the prime number of the DLP increases, quantum 

kernels continue to perform steadily. 
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Chapter 5: Discussion and Conclusion  

 

This chapter discusses the key findings and summarizes the conclusions drawn from the results of 

the experiments. Furthermore, it talks about probable future paths in the realm of KQSVM and 

QML in general. To conclude, this chapter delves into the key learning provided by the process of 

developing this thesis and reserves. 

5.1 Discussion 

This thesis has reviewed several topics of significant importance to industry decision-makers and 

researchers in the field of QML. Throughout the chapters comprehended in this investigation, both 

theoretical and practical concepts are reviewed to offer a smooth yet robust introduction to the 

field of QML (and, more specifically, KQSVMs). Chapters 1 and 2 introduce QML and its role 

within IS while examining previous works in this realm. Chapter 3 equips the reader with the 

“building blocks” required to understand the technical topics discussed throughout the thesis. 

Sections 3.1 and 3.2 review the foundational knowledge of QML from a theoretical standpoint. 

With a particular focus on linear algebra and quantum mechanics, they aim to build a bridge that 

allows individuals to engage in the discussions that will follow later in the thesis. Furthermore, 

Section 3.3 provides a practical approach to the process of programming in a quantum environment. 

This section is targeted at both individuals and organizations interested in launching quantum 

initiatives. It covers the procedures for manipulating qubits, utilizing quantum gates, and 

establishing connections with quantum hardware. With this knowledge, now the reader has the 

necessary tools to dive into Chapter 4, which focuses on the experiments. Section 4.1 briefly 

introduces the logic of an SVM and how such an algorithm can be enhanced through quantum 

technology. Finally, Section 4.2 puts this idea into practice by delving into the procedure of 

programming a QSVM that utilizes a quantum kernel. This process culminates in the 

experimentation part of this thesis, resulting in the development of a quantum algorithm that 

companies can utilize for classification tasks. 
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The experiments outlined in Section 4.2 provided results that can be of important value to industry 

leaders, particularly those interested in classification tasks. These results can be summarized into 

two main takeaways, contingent upon the nature of the dataset that is being manipulated.  

The first key takeaway is that utilizing QML techniques, such as QKSVM, does not seem to 

provide any benefits in certain cases. This conclusion extends to those datasets that are most 

common in daily classification tasks. In the pre-experimentation part of this project, several of 

these datasets were utilized, where quantum kernels had the same performance as classical kernels. 

This may be caused by the reduced setting in which the experiments were conducted, where the 

quantum circuits utilized a limited number of qubits, and where quantum advantage was not 

possible. 

The second one is a consequence of the first one. The absence of quantum enhancement was 

fundamental in formulating an innovative approach to this thesis, which pivoted towards the use 

of a mathematically complex distribution dataset, like the DLP. This type of mathematical problem 

is known to be particularly complicated for classical algorithms due to its one-way function 

structure. As reviewed in Section 4.2.1.1, the DLP is particularly suited for scenarios where the 

user aims to transform a variable, yet the resulting output is difficult to trace back to the original 

variable. This difficulty arises because, while it is relatively simple to compute one side of the 

equation given the DLP congruence, determining the correct exponent to hold the DLP congruence 

true becomes a computationally intensive task involving trial and error (Menezes et al., 2020).  

To conclude, as portrayed in Section 4.3, the quantum kernel had a better performance, particularly 

in accuracy, when compared to the three classical kernels selected. This behavior was extended 

throughout the different generated datasets and performance metrics. These results suggest that 

when it comes to classifying a DLP distributed dataset, a quantum kernel is much more accurate 

than any of the classical kernels utilized in these experiments. While quantum kernels scored 81-

89% in accuracy throughout all datasets, classical kernels were more inconsistent with accuracy 

results that range between 50-71%. Besides, the spike in the recall metric for certain classical 

algorithms, paired with the still inferior performance in the F1 score, suggests that under certain 

scenarios, classical kernels tend to classify all the data points as “DLP-distributed,” incorrectly 

assigning labels to those data points that do not follow such distribution.  
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5.2 Conclusion 

To summarize the main findings of this investigation, this section focuses on dissecting each of 

the results’ components and its effect on stakeholders and current literature. 

Returning to the original question posed in the introductory chapter of this thesis: In the context of 

supervised learning, and more specifically SVMs, under what circumstances are Quantum Kernel 

Support Vector Machines better than classical Kernel Support Vector Machines? 

The satisfactory results provide direct insights into the research question: Datasets of a 

mathematically complex nature like the DLP are a scenario where quantum kernels perform better 

than classical kernels, even in near-term devices with a reduced number of qubits. With this, the 

empirical gaps that forged the motivation to draft this thesis outlined in Section 1.2 have been 

filled. 

The experiments performed in this thesis showed to be successful in proving that KQSVMs can 

outperform classical kernelized SVMs for datasets whose distribution relies on the DLP, providing 

a practical example of the approach suggested by Liu, Arunachalam, and Temme (2021). This 

proves that it is possible to utilize a quantum feature space as a kernel, providing better results than 

classical kernels, as described in previous literature (Havlíček et al., 2019; Schuld & Killoran, 

2019). Certain classical kernels, like the polynomial and sigmoid kernels, require parameters to 

function. These parameters are often arbitrarily assigned, sometimes providing poor results 

depending on the parameters chosen (Ganguly, 2021, p. 299). This process can be tedious and 

inefficient when classifying data points given a dataset distribution. A quantum kernel, however, 

can map the data into a quantum space without the need for any parameter in the process due to its 

quantum nature. 

Given the constraints imposed by IBM cloud services in terms of the length of the datasets and the 

size of the prime number of the DLP (which Section 5.2.1 will discuss in detail), it has not been 

possible to determine whether quantum kernels are still a valid tool as the variables of the 

experiment grow. Nonetheless, the experiments showed that the quantum kernel obtained steady 

results as the prime number selected for the DLP increased in size. This evidence provides an 

intuition for potential further performances. 
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Direct applications from these conclusions can be applied to the domain of cryptography and IS, 

as previously mentioned in Section 1.2. The field of cryptography shares common ties with the 

realm of IS through cybersecurity and data privacy. While IS deals with storing and transmitting 

digital information, cybersecurity looks at protecting such information within those information 

systems. The core of this relationship is founded on the need to safeguard sensitive information 

from unauthorized access through cryptographic techniques, ensuring two of the three main 

cybersecurity pillars: integrity and confidentiality. Using different cryptographic tools makes it 

possible to encode and decode data, allowing for the transfer of sensitive information without the 

threat of its interception by an intermediary. This encryption process is fundamental in protecting 

data during storage, transmission, and processing. Essentially, cryptography serves as one of the 

building blocks of cybersecurity and data privacy, which are crucial within IS environments. The 

DLP datasets that were experimented with were inspired by cryptographic tools. This is because 

some algorithms base their security on the assumption that certain groups within the DLP have no 

efficient solution (Menezes et al., 2020). These experiments proved that quantum-inspired 

algorithms may have an edge over classical ones for these types of mathematical computation 

when extrapolated to the ML field. This has the potential to challenge security networks that 

heavily rely on DLP-based security tests, strengthening the argument of quantum computers being 

a threat to the cryptographic tools currently in use. 

Furthermore, these findings can be of excellent value to other scientific fields that obtain value 

from classification tasks. Besides the existing literature on KQSVM outlined in Chapter 2, the 

insights drawn from this thesis can support fields like healthcare and life sciences, where a narrow 

quantum advantage has already been proved (Krunic et al., 2022), or in the financial sector, where 

KQSVM has been previously used for recession prediction (Rigetti Computing, 2023). 

Nonetheless, the results portrayed in this thesis suggest that quantum kernels seem to be an optimal 

solution not only for general datasets like these, where they have a slight or equal performance 

compared to classical algorithms, but for data that is generally complicated to classify. Therefore, 

the results of this thesis invite the utilization of KQSVM techniques for datasets within all 

scientific fields, where the data is apparently “randomly” distributed, yet quantum kernels can 

utilize their power to successfully classify new data points, as shown with the DLP dataset.  
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To conclude, it is crucial to understand that the essence of the experiments, results, and conclusions 

outlined in this thesis lies in addressing a challenge inherently difficult for classical computers like 

the DLP. In this investigation, the focus is not on refining or enhancing already-established ML 

algorithms with their quantum counterparts. Instead, it aims to illustrate the potential of quantum 

algorithms to tackle novel problems that classical algorithms struggle with. Therefore, these 

experiments highlight how quantum advantage may be obtained by using QML techniques for 

specific mathematical complex problems that scientists are not used to solving regularly because 

they were thought to be “unsolvable” by classical computers. 

5.2.1 Challenges and Limitations 

Several constraints were imposed by IBM cloud services during the experimentation process of 

this investigation. The two main variables affected by these constraints are the length of the 

datasets and the size of the prime number utilized to generate the DLP dataset. Thus, it has not 

been possible to determine whether quantum kernels are still a valid tool as the variables of the 

experiment grow. Nonetheless, the experiments showed that the quantum kernel obtained steady 

results as the prime number selected for the DLP increased in size. This provides an intuition of 

possible further performances.  

Another limitation of this thesis is the absence of a real-life dataset that follows a DLP distribution. 

Due to the complexity of this problem, at the time this thesis was published, it was impossible to 

determine a scenario where data was separated through this class distribution. Hence, the approach 

provided by Liu et al. (2021) was followed to generate an artificial dataset with these 

characteristics. This generated dataset can provide valuable insights regarding future explorations 

within the realm of QML after this thesis has shown quantum advantage for a dataset with said 

features. 

5.2.2 Future Work and Recommendations 

Future works in the field may point to finding other mathematically complex tasks for classical 

algorithms where quantum computing can provide an advantage. Using quantum kernels to map 

data into a higher dimensional feature space may apply to other ML applications. In this case, 

quantum computers can easily compute the inner product of two quantum states, which essentially 

calculates the similarity between two data points. Finding other applications of this technique in 

near-term quantum computers would be of extreme interest for ongoing research and business 
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applications. Moreover, the experiments performed utilized a quantum simulator due to the small 

number of qubits required for the task. Finding a scenario in which more qubits are needed would 

allow more empirical experiments with actual quantum devices, which would be of great interest 

as quantum hardware becomes widely available and more powerful with time. Finally, there are 

other classical kernels besides those selected to be examined against the quantum kernel (linear, 

polynomial, and sigmoid). Continuing this line of research involves expanding its frontiers by 

incorporating classical kernels of other nature like the RBF, Laplacian, or exponential kernels.  

Besides utilizing other classical kernels, several areas within the investigation portrayed in this 

thesis could be enhanced to obtain further results. These improvements will serve as 

recommendations for future projects in the field. Section 5.2.1 outlines the limitation of generating 

a dataset from a prime number greater than 1024 bits, a constraint imposed by the IBM server. 

Increasing the size of the prime number would allow for the exploration of quantum and classical 

algorithms as the DLP grows in complexity. This would provide further insights into the behavior 

of such algorithms in scenarios similar to those encountered in practical cryptographic applications. 

In terms of potential improvements to the algorithm, increasing the dataset size (as also mentioned 

in Section 5.2.1) would be of immense value for a more detailed and robust model. As the number 

of samples used to build the model increases, the accuracy and other performance metrics will 

likely increase too.  

For those looking to replicate the experiments performed in this thesis, it is fundamental to note 

that qiskit 0.46 was the version utilized in the process of developing the quantum-oriented 

programming part contained in this exploration. Nonetheless, the qiskit community recently 

announced the release of qiskit 1.0. This updated version of qiskit is a foundational change aiming 

to wrap qiskit into the simple packaging structure used in most Python packages. This major update 

in qiskit might lead to certain sections of the code cited throughout the thesis becoming inoperable. 

Nonetheless, most of the quantum programming concepts outlined in this exploration are still valid 

and accurate, although they may be accessed through a different packaging structure in qiskit 1.0.  

Finally, as referenced in Section 2.2, there have been several projects discussing the role of QML 

in unsupervised learning. Although this thesis particularly focuses on supervised learning, it has 

provided significant insights into the theoretical scenarios where quantum technology can support 
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an algorithm’s functioning logic. Therefore, finding similar situations where quantum algorithms 

can support unsupervised learning models can be the scope of future explorations in the field. 

5.2.3 Key Learnings 

Developing this thesis started with a complete absence of knowledge concerning QML. The 

learning curve required for creating this work was immense. Before any substantial progress could 

be made, an extensive technical introduction to QC and QML paired with an initiation into 

conducting research in a scientific field was necessary. This subsection explores the key learnings 

and important processes that allowed this thesis to reach its final form. 

 The first stages of the project focused on understanding the foundations of linear algebra and 

quantum mechanics. During this time, Sections 3.1 and 3.2 were developed. These served as the 

pillars that sustain the following sections, where the focus shifts to quantum computing and 

KQSVMs. Resources from IBM Quantum enabled access to learning materials concerning QC, 

initially through a theoretical approach that would later be applied in QML projects. It was at this 

stage that the intricacies of quantum circuits, gates, and entanglement circuits were introduced, 

which were essential for understanding concepts later applied in the development of KQSVMs. 

Once this knowledge was solidified, concepts and techniques were applied to a specific niche of 

QML: quantum kernels. Only after delving into the details of QML it is possible to grasp the 

rationale behind why quantum kernels can provide an advantage over classical kernels. 

Furthermore, understanding the nature of the DLP was fundamental for comprehending the 

possible scenarios where quantum kernels can support existing techniques. 

Parallelly, a systematic research approach was crucial for integrating the theoretical knowledge 

mentioned above with existing literature and potential business applications. This approach 

commenced with a thorough literature review, encompassing scientific papers and studies on QML. 

Analyzing these works proved instrumental in identifying knowledge gaps and the main challenges 

faced by the QML community, which would later facilitate experiment development. Additionally, 

intensive research was conducted to find practical applications of KQSVMs in various scientific 

fields, establishing a clear goal for the relevance of the ongoing research in question within the 

current environment. The comprehensive approach outlined served as the project’s guiding 

principle, resulting in the development of this thesis. 
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Appendix 

A.1 Determinants 

A determinant is a property of squared matrixes (two-by-two, three-by-three, …), which has the 

form of a scalar. This scalar refers to the factor by which the plane is scaled after a linear 

transformation. Determinants are of major help when studying linear transformations and other 

linear algebra domains, like systems of linear equations. The determinant of the matrix A can be 

notated as 𝑑𝑒𝑡(𝐴) , or |𝐴| . Calculating determinants can be rather complicated as the matrix 

grows larger, but this process is simplified by assessing two-by-two and three-by-three matrixes, 

which are the ones that will be managed more often in the context of this thesis. For squared matrix 

A of two-by-two, the determinant is calculated as shown in Equation A.1.1: 

|𝐴| = �𝑎		𝑏𝑐		𝑑� = 𝑎𝑑 − 𝑐𝑏 

(A.1.1) 

Similarly, for a squared matrix B of three-by-three, the determinant is calculated through the 

following formula in Equation A.1.2: 

|𝐵| = �
𝑎		𝑏		𝑐
𝑑		𝑒		𝑓
𝑔		ℎ		𝑖

� = 𝑎𝑒𝑖 + 𝑑ℎ𝑐 + 𝑏𝑓𝑔 − 𝑔𝑒𝑐 − ℎ𝑓𝑎 − 𝑑𝑏𝑖 

(A.1.2) 

The relevance behind calculating determinants of a vector set (i.e., transformation matrix, or 𝚤	Wand 

𝚥̂ transformed) is that they directly provide the information on whether that vector set is linearly 

dependent or not. Therefore, the main takeaways are: 

- If the determinant is equal to 0, the vectors within the vector set are linearly dependent on 

each other and cannot be used as a base.  

- If the determinant is not 0, the vectors within the vector set are linearly independent and 

can be used as a base. 

Going back to the previous definition, these statements logically support the definition of 

determinants. If the determinant is 0, this means that after the linear transformation, the plane is 
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scaled by 0, reducing the 2D or 3D plane to a single line or a single point. If the determinant is not 

0, the plane is being scaled by a number, which means that it continues to be a 2D or 3D plane.  

A.2 Determinants and eigenvectors 

Because 𝜆 is a scalar, it is required to find a way to represent it as a matrix, which can be done by 

multiplying it by the identity matrix (a matrix that has the basis vectors as its components), known 

as “I” in Equation A.2.1: 

s𝐼 = t
1	0	0
0	1	0
0	0	1

u		,	𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒: 

𝜆	𝑎𝑠	𝑎	𝑚𝑎𝑡𝑟𝑖𝑥 = 𝜆 t
1	0	0
0	1	0
0	0	1

u = t
𝜆	0	0
0	𝜆	0
0	0	𝜆

u 

(A.2.1) 

Therefore, all the necessary variables are present in order to rewrite the previous equation into 

Equation A.2.2: 

𝐴�⃗� = (𝜆𝐼)�⃗�		, 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒: 

(𝐴 − 𝜆𝐼)�⃗� = 	0 

(A.2.2) 

To solve this equation, either �⃗� has to equal zero, or 𝐴 − 𝜆𝐼 has to equal zero. The first option is 

not viable because that would mean the vector would not exist. Therefore, the value of 𝐴 − 𝜆𝐼 

through the second option. Nonetheless, this expression is still in a matrix form, which is not how 

eigenvalues are represented. Hence, the determinant is used to find the scalar representation of this 

matrix. After following these steps, it is concluded that to find the eigenvalue, Equation A.2.3 is 

used for solving λ : 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 	0 

(A.2.3) 
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A.3 Eigenbasis 

A change of basis is computed by multiplying three matrixes: the change of basis matrix (with the 

coordinates of your desired vector basis), its inverse, and the original transformation matrix. Refer 

to the example from Section 3.1.6 (depicted in Figure A.3.1), where the eigenvectors of a linear 

transformation are %	10) and %−11 ): 

Figure A.3.1: Eigenvector After Linear Transformation (1) 

  

In this example, it is desired for the vectors %	10) and %−11 ) to become a vector basis. This can be 

done through the change of matrix basis %	1		 − 10							1). To compute the change of basis, Equation A.3.1 

below shows the process of multiplying the inverse of the change of matrix basis times the original 

transformation matrix times the change of matrix basis: 

%	1		 − 10							1)
-!
%	3		10		1) %	

1		 − 1
0							1) = %	3			00				2) 

(A.3.1) 

 

This computation will always output a diagonal matrix, which can be used as the “new” basis. 

Change of 
matrix basis 

inverse 

Original 
transformation 

matrix 

Change of 
matrix 
basis 

Eigenbasis 
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A.4 Imaginary and complex numbers 

The last mathematical domain covered concerns imaginary and complex numbers. The intuition 

behind these concepts comes from the idea of calculating the square root of a negative number. 

Although it may seem abstract at first, when applied to science, imaginary numbers do follow the 

laws of nature, for example, in alternate current circuits or mathematical algorithm development. 

Therefore, even though they cannot be logically explained, they are fundamental in solving real-

life problems (Avramescu, 2023). The basic expression of an imaginary number starts with the 

determination of “i,” as seen in Equation A.4.1: 

𝑖 = 	√−1 

(A.4.1) 

The different expressions in which “i” can be represented (−𝑖, 𝜋𝑖, 𝑒𝑖 … ) are known as imaginary 

numbers. Creating expressions that blend imaginary numbers with real numbers is known as 

complex numbers; for example, see Equation A.4.2: 

𝑧 = 	5 + 3𝑖 

(A.4.2) 

Two main functions provide information about a complex number. The first one is 𝑅𝑒(), which 

outputs the real part of a complex number from the example in 𝑧 = 5 + 3𝑖, 𝑅𝑒(𝑧) = 5. The second 

function is 𝐼𝑚(), which refers to the multiple by which the imaginary part is scaled. In the previous 

example, 𝐼𝑚(𝑧) = 3. These functions can be depicted in a complex-number graph, as can be seen 

in Figure A.4.1, where 𝑅𝑒() is the X-axis, and 𝐼𝑚() is plotted on the Y-axis. The equation 𝑧 =

	5 + 3𝑖 would be graphically represented as depicted in Figure A.4.1: 

Figure A.4.1: Graphical Representation of Complex Number 
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A.5 Complex Conjugate 

The complex conjugate stands for the inverse of an imaginary number, where the real part remains 

unchanged, and the sign of the imaginary part is inversed. The notation used to represent the 

complex conjugate is “𝑧∗” and its example applied to the complex number referred to in Equation 

A.4.2 is represented in Equation A.5.1: 

𝑧∗ = 5 − 3𝑖 

(A.5.1) 

The utility of the complex conjugate lies behind the fact that it provides the resources to deal with 

complex functions and complex vectorial spaces. These tools are fundamental for quantum 

mechanics and quantum computing because both of these fields heavily rely on quantum wave 

functions. 

 


